Collaborative Research: Mechanisms of hierarchical microstructure formation under rapid solidification of functional Heusler alloys

合作研究:功能霍斯勒合金快速凝固下分级显微结构形成机制

基本信息

  • 批准号:
    1808145
  • 负责人:
  • 金额:
    $ 21.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Description: Functional magnetic materials can have outstanding properties. Magnetic shape memory alloys change from one shape to another with the application of a magnetic field, and can potentially replace mechanical actuators that currently need several moving parts that are difficult to assemble and might break easily. Magnetocaloric materials have a characteristic that allows them to cool or heat when exposed to a magnetic field, and might be used as cooling devices without the need of liquids and compressors currently required in refrigerators. Presently, it is difficult to fabricate complex parts of functional magnetic materials. Advanced, laser or electron beam manufacturing techniques offer the ability to print very complex shapes, but create challenging microstructures that result in non-functional parts. This award supports research that will establish a fundamental understanding between advanced manufacturing parameters, composition, microstructure and properties, and enable advanced manufacturing of magnetic materials with a targeted set of functions, or behaviors. The approach employs an innovative combination of rapid cooling and solidification processing and small-scale experiments, with extensive computational modeling, and validation experiments and characterization. The gained knowledge is expected to reduce barriers for further adoption of functional magnetic materials beyond prototypes in a large variety of fields and currently out-of-reach applications, e.g. printable actuators, pumps and solid cooling devices. The combination of functional materials, computer modelling, and advanced manufacturing will be used to create experience-based STEM outreach activities for K-12 students, their teachers and parents. These demonstrations and hands-on experiments will take place at local schools, summer schools and outreach events which serve especially economically challenged and underrepresented students populations. The training of undergraduate and graduate students in this multidisciplinary research environment will enhance the students' preparedness for fast-changing, multifaceted and collaborative work place. The results of this research will be presented in research journals and conferences, but also through blog-posts, social media and openly accessible videos.Technical Description:Functional Heusler alloys such as magnetic shape-memory alloys or magnetocaloric materials induce up to 10% strain under an applied magnetic field and actuate nearly as fast as piezoceramics, or enable solid-state cooling with up to 30% better efficiency than traditional technologies. Presently, the fabrication of complex shaped parts with good functional properties is very limited, compromising a broad application of these materials. Advanced, laser and electron beam manufacturing techniques enable complex build design, but create challenging microstructures due to rapid heating, melting and solidification, and result in non-functional or low functionality parts. This award supports an integrated experimental and computational research that aims to improve our fundamental understanding between composition, microstructure and functional properties in Ni-Mn-Ga based Heusler alloys subjected to rapid solidification and cyclic heating in layer-based advanced manufacturing and post-processing. Research efforts pursue the following goals: (A) Identify fundamental relations between alloy composition, microstructure and properties under far-from-equilibrium rapid solidification and cyclic heating conditions, (B) develop CALPHAD-based predictive models for nonequilibrium phase formations, micro-segregation behavior and magnetic properties, and (C) establish composition and grain size control in layered deposits of functional Heusler alloys through targeted rapid solidification processing and post-heat treatment. The outcome of this research will enable laser-based deposition of Heusler alloys and permit functional, complex shaped, self-limiting actuator components (magnetic shape-memory alloys) and highly efficient solid-state cooling devices (magnetocaloric materials).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:功能磁性材料可以具有出色的特性。磁性内存合金通过应用磁场的应用从一种形状变为另一种形状,并且可以潜在地替换当前需要几个难以组装且可能容易破裂的机械执行器。磁电材料具有一个特征,可在暴露于磁场时冷却或加热,并且可以用作冷却装置,而无需冰箱中目前需要的液体和压缩机。目前,很难制造功能性磁性材料的复杂部分。高级,激光或电子束制造技术提供了打印非常复杂的形状的能力,但会产生具有挑战性的微观结构,从而导致非功能性零件。 该奖项支持将在先进的制造参数,组成,微观结构和属性之间建立基本理解的研究,并能够以有针对性的功能或行为来实现高级制造磁性材料。该方法采用了快速冷却和固化处理和小规模实验的创新组合,以及广泛的计算建模以及验证实验和表征。预计获得的知识将减少在各种领域的原型和目前的影响外应用中进一步采用功能材料的障碍,例如可打印的执行器,泵和固体冷却装置。功能材料,计算机建模和高级制造的组合将用于为K-12学生,他们的老师和父母创建基于经验的STEM外展活动。这些演示和实践实验将在当地学校,暑期学校和外展活动中进行,这些活动特别经济挑战和代表性不足的学生人口。在这个多学科研究环境中,在本科生和研究生的培训将增强学生为快速变化,多方面和协作的工作场所的准备。这项研究的结果将在研究期刊和会议上以及通过博客群,社交媒体和公开可访问的视频中介绍。技术描述:功能性的高卢斯合金,例如磁性形状 - 内周期合金或磁性材料,在应用磁场下诱导高达10%的劳动,并在磁场下高达10%的压力,并且与固定效率相比,在固体效率方面几乎可以保持良好的效果,以固定的良好效果,以固定效果良好的效果,以良好的效果和良好的良好良好的水平。目前,制造具有良好功能特性的复杂形成部分非常有限,这损害了这些材料的广泛应用。高级,激光和电子束制造技术可实现复杂的构建设计,但由于快速加热,熔化和凝固而产生具有挑战性的微观结构,并导致了非功能或低功能零件。该奖项支持一项综合的实验和计算研究,旨在提高基于Ni-MN-GA的组合物,微观结构和功能性能之间的基本理解,这些基于NI-MN-GA的Heusler合金受到快速固化和基于层的高级制造和后处理后的固化和环状加热。研究工作追求以下目标:(a)确定合金组成,微观结构和特性之间的基本关系,在远程平衡的快速固化和循环加热条件下,(b)开发基于calphad的预测模型,以实现非质量相形成,无质量阶段形成,微观态度行为和磁性的快速构建和(c)的组成和(c)的组合和(c),以及(c)的构图和(c)后加热治疗。这项研究的结果将使基于激光的Heusler合金沉积,并允许功能性,形状,自限制的执行器组件(磁性形状 - 内存合金)和高效的固态冷却设备(磁环质量材料)。该奖项反映了NSF的法定任务,并通过评估范围进行了评估的范围,并具有范围的范围。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of rapid solidification and post-processing on microstructure, magnetic and structural transition temperatures and magnetic properties in Ni50Mn29Ga21 magnetic shape-memory alloy
快速凝固和后处理对Ni50Mn29Ga21磁性形状记忆合金显微组织、磁性和结构转变温度以及磁性能的影响
  • DOI:
    10.1016/j.actamat.2023.119325
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Flitcraft, Emily;De Vecchis, Pierangeli Rodriguez;Kuprienko, Alexey;Chmielus, Markus;Fink, Carolin
  • 通讯作者:
    Fink, Carolin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carolin Fink其他文献

Solidification Behavior and Microstructure Evolution in Dissimilar Electron Beam Welds Between Commercially Pure Iron and Nickel
商业纯铁和镍之间异种电子束焊接的凝固行为和微观结构演变

Carolin Fink的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
车联网中基于多智能体系统的协同优化机制研究
  • 批准号:
    62302062
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向智能物联网的端边协作机制与任务调度方法研究
  • 批准号:
    62372038
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLSTN3β介导的内质网-线粒体协作调控白色脂肪细胞能量代谢改善肥胖的机制研究
  • 批准号:
    82300980
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 21.54万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 21.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
  • 批准号:
    2328529
  • 财政年份:
    2024
  • 资助金额:
    $ 21.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
  • 批准号:
    2328528
  • 财政年份:
    2024
  • 资助金额:
    $ 21.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322205
  • 财政年份:
    2024
  • 资助金额:
    $ 21.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了