Advanced Research on Second-Order Variational Analysis with New Applications to Optimization, Control, and Practical Modeling

二阶变分分析的高级研究及其在优化、控制和实际建模中的新应用

基本信息

  • 批准号:
    1808978
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This project is devoted to developing advanced tools of mathematical analysis and optimization of large-scale systems arising in various applications. Such systems include nonstandard optimization-related and equilibrium problems with data that may not be differentiable in the usual sense. Besides developing new mathematical knowledge, the principal investigator and his seven PhD students who participate in the project (including four students from underrepresented groups in the mathematical sciences) pay particular attention to a variety of models arising in applications from socioeconomics, traffic equilibria, behavioral science, and water resources.The project studies new topics in second-order variational analysis, optimization, and systems control that are largely motivated by problems arising in applications. It is conditionally divided into five interrelated parts. Part I concerns open problems in second-order generalized differential theory and its applications to optimization-related areas of nonlinear analysis. Particular attention is paid to constructive computations of major second-order generalized derivatives for remarkable classes of extended-real-valued functions which play a crucial role in the subsequent parts of the project. Part II is devoted to second-order characterizations of various stability notions, including tilt and full stability in nonpolyhedral conic programming, and elliptic variational inequalities. Part III of the project deals with the study of critical multipliers in variational systems that are largely responsible for the slow convergence of primal-dual algorithms of optimization. Here, the PI and his collaborators develop new Newton-type methods to solve nonsmooth optimization and related problems. Part IV is devoted to novel developments in control theory, including feedback control and stabilization of ODE and PDE systems. Another major topic considered is optimal control of nonconvex versions of the sweeping process that plays a key role in subsequent applications. Some of these applications are the focus of Part V of the project, where the PI and his collaborators undertake a comprehensive study of the optimization problems for the controlled planar crowd motion model, which is well recognized in socioeconomics and traffic equilibria. Other types of applications considered stem from behavioral sciences and water resource models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目致力于开发各种应用中出现的大型系统的数学分析和优化的先进工具。这样的系统包括非标准的优化相关和平衡问题,其数据在通常意义上可能是不可微的。除了开发新的数学知识,首席研究员和他的七个博士生谁参加了该项目,(包括四名来自数学科学领域代表性不足的学生)特别关注社会经济学,交通平衡,行为科学和水资源应用中出现的各种模型。该项目研究二阶变分分析,优化,和系统控制,主要是由应用中出现的问题引起的。它有条件地分为五个相互关联的部分。第一部分是关于二阶广义微分理论及其在非线性分析的最优化相关领域中的应用的公开问题。特别注意的是建设性的计算主要的二阶广义导数显着类的扩展实值函数,发挥了至关重要的作用,在随后的部分项目。第二部分致力于各种稳定性概念的二阶刻画,包括非多面体锥规划中的倾斜和完全稳定性,以及椭圆变分不等式。该项目的第三部分涉及变分系统中的关键乘数的研究,这些乘数在很大程度上是原始对偶优化算法收敛缓慢的原因。在这里,PI和他的合作者开发了新的牛顿型方法来解决非光滑优化和相关问题。第四部分致力于控制理论的新发展,包括反馈控制和稳定的常微分方程和偏微分方程系统。考虑的另一个主要议题是最优控制的非凸版本的清扫过程中起着关键作用,在随后的应用。其中一些应用是该项目第五部分的重点,PI及其合作者对受控平面人群运动模型的优化问题进行了全面研究,该模型在社会经济学和交通平衡方面得到了广泛认可。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous feedback stabilization of nonlinear control systems by composition operators
复合算子对非线性控制系统的连续反馈稳定
  • DOI:
    10.1051/cocv/2022022
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopherson, Bryce A.;Mordukhovich, Boris S.;Jafari, Farhad
  • 通讯作者:
    Jafari, Farhad
Augmented Lagrangian method for second-order cone programs under second-order sufficiency
二阶充分性下二阶锥规划的增广拉格朗日方法
  • DOI:
    10.1007/s10898-021-01068-1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Hang, Nguyen T.;Mordukhovich, Boris S.;Sarabi, M. Ebrahim
  • 通讯作者:
    Sarabi, M. Ebrahim
Optimization of a Perturbed Sweeping Process by Constrained Discontinuous Controls
通过约束不连续控制优化扰动扫掠过程
Criticality of Lagrange multipliers in extended nonlinear optimization
  • DOI:
    10.1080/02331934.2020.1723585
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Hong-Mun Do;B. Mordukhovich;M. Sarabi
  • 通讯作者:
    Hong-Mun Do;B. Mordukhovich;M. Sarabi
Variational analysis in normed spaces with applications to constrained optimization
赋范空间中的变分分析及其在约束优化中的应用
  • DOI:
    10.1137/20m1342215
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Mohammadi, A.;Mordukhovich, B.S.
  • 通讯作者:
    Mordukhovich, B.S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Mordukhovich其他文献

Well-Posedness and Stability of Discrete Approximations for Controlled Sweeping Processes with Time Delay
  • DOI:
    10.1007/s10957-025-02746-w
  • 发表时间:
    2025-06-18
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Boris Mordukhovich;Dao Nguyen;Trang Nguyen;Norma Ortiz-Robinson;Vinicio Ríos
  • 通讯作者:
    Vinicio Ríos
Foreword: special issue on nonsmooth optimization and applications
  • DOI:
    10.1007/s10107-007-0153-1
  • 发表时间:
    2007-07-11
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Boris Mordukhovich;Arkadi Nemirovski;Yurii Nesterov
  • 通讯作者:
    Yurii Nesterov

Boris Mordukhovich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Mordukhovich', 18)}}的其他基金

Variational Analysis: Theory, Algorithms, and Applications
变分分析:理论、算法和应用
  • 批准号:
    2204519
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Second-Order Variational Analysis and Its Applications
二阶变分分析及其应用
  • 批准号:
    1512846
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Research on Variational Analysis and Its Applications
变分分析及其应用研究
  • 批准号:
    1007132
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Methods of Variational Analysis in Optimization, Equilibria, and Control
优化、平衡和控制中的变分分析方法
  • 批准号:
    0603846
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Variational Analysis and its Applications
变分分析及其应用
  • 批准号:
    0304989
  • 财政年份:
    2003
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Variational Analysis: Theory and Applications
变分分析:理论与应用
  • 批准号:
    0072179
  • 财政年份:
    2000
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Research on Variational Analysis and Applications
变分分析及其应用研究
  • 批准号:
    9704751
  • 财政年份:
    1997
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications of Infinite Dimensional Nonsmooth Analysis to Optimization and Control
数学科学:无限维非光滑分析在优化和控制中的应用
  • 批准号:
    9404128
  • 财政年份:
    1994
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonsmooth Analysis and Approximation Methods in Optimization and Control
数学科学:优化与控制中的非光滑分析和逼近方法
  • 批准号:
    9206989
  • 财政年份:
    1992
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Optimization, Nonsmooth Analysis, and Optimal Control
数学科学:优化、非光滑分析和最优控制研究
  • 批准号:
    9006224
  • 财政年份:
    1990
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Doctoral Dissertation Research: Aspect and Event Cognition in the Acquisition and Processing of a Second Language
博士论文研究:第二语言习得和处理中的方面和事件认知
  • 批准号:
    2337763
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Effects of non-verbal working memory and spoken first language proficiency on sign language acquisition by deaf second language learners
博士论文研究:非语言工作记忆和第一语言口语能力对聋哑第二语言学习者手语习得的影响
  • 批准号:
    2336589
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: A longitudinal approach to examining perception-production links in second language speech sound learning.
协作研究:检查第二语言语音学习中感知-产生联系的纵向方法。
  • 批准号:
    2309561
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Research on the Emergence of the "Second Founder" in the Family Business
家族企业“第二创始人”的产生研究
  • 批准号:
    23K01584
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Forestial Voices: a Compositional Sound Study Comparing the Voices of Birmingham Institute of Forest Research Second Generation Forest and the Ruskin
森林之声:比较伯明翰森林研究所第二代森林和拉斯金的声音的作曲声音研究
  • 批准号:
    2875658
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Preparing Students for the Second Quantum Revolution Using Research-Validated Learning Tools
使用经过研究验证的学习工具让学生为第二次量子革命做好准备
  • 批准号:
    2309260
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: A longitudinal approach to examining perception-production links in second language speech sound learning.
协作研究:检查第二语言语音学习中感知-产生联系的纵向方法。
  • 批准号:
    2414107
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Validation of Response Time Methodology as a Novel Measure of Noticing in Second Language Acquisition Research Using Eye-Tracking
响应时间方法作为使用眼动追踪的第二语言习得研究中新的注意测量方法的验证
  • 批准号:
    23K00678
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Empirical research on the mechanism of utilizing disaster tradition tourism for the development of the second stage of reconstruction
利用灾害传统旅游促进灾后重建第二阶段发展机制的实证研究
  • 批准号:
    22H03857
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Doctoral Dissertation Research: Testing the Three-Stage Model of Second Language Skill Acquisition
博士论文研究:测试第二语言技能习得的三阶段模型
  • 批准号:
    2140704
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了