RUI: Optical Excitation of Nonradiating Nanosphere for Lossless Device
RUI:用于无损器件的非辐射纳米球的光激发
基本信息
- 批准号:1809410
- 负责人:
- 金额:$ 13.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability of metal nanoparticles to confine light to a very small volume (down to a few tens of nanometer) has been developed into novel miniaturized optical and electronic devices. However, the high level of losses associated with the noble metals and heating have always been a challenge limiting the efficiency of optical devices. In this regard, there is a "new kid on the block", namely electrodynamic "anapole" mode (i.e. "without poles" in Greek), that can overcome these issues by minimizing the radiative loss. This proposal plans to explore anapole mode associated with high-index dielectric nanosphere (Silicon nanoparticles) that can act as a radiationless source and confine energy efficiently by minimizing the radiative loss. The knowledge gained from our research can potentially be translated into prototypes that can be developed into novel optical and photonic devices, such as nano-lasers, broadband photo-detectors, sensors, etc. Our research will also enhance the undergraduate education by providing undergraduate participation in cutting-edge experimental research, integration of research into the curriculum, and networking opportunities with external collaborators and scientists, which will help motivate our students to choose a STEM career path, including students from under-represented community. Resonant optical excitation of dielectric particles offers unique opportunities for future optical and nanophotonic devices because of their reduced dissipative losses and large resonant enhancement of both electric and magnetic near-fields. In this regard, the discovery of the electrodynamic "anapole mode" as a non-radiating source in high index dielectric materials provides a unique playground to realize new nanophotonic devices. Under specific conditions, the superposition of internal modes (magnetic and toroidal) of high-index dielectric nanostructures can generate non-radiating states, called "anapoles", that are free from radiative loss. Even though the study of non-radiating objects has been part of fundamental physics for a long time, the dynamic anapole corresponding to the time-varying oscillating charge-current distributions in the optical frequencies was only experimentally demonstrated in 2015. Since spherical geometry is not suitable for excitation of the anapole mode under plane wave illumination, excitation of anapole mode in the demonstrated structure relied on the design of a highly specialized structure (Si nanodisk). However, in spite of constructing the nanodisk for the specific anapole condition, the nanodisk was unable to produce an "ideal" anapole mode.Here, instead of specifically designed structures, we propose to excite the anapole mode in isotropic nanosphere. Since plane wave illumination is not suitable for anapole mode excitation in a nanosphere, we will exploit the polarization symmetry of cylindrical vector beam to excite "ideal" anapole mode in isotropic nanosphere. More specifically, we will use the radial electric field distribution and absence of magnetic field in the focal plane of the radially polarized cylindrical vector beam to excite the ideal anapole mode. Since the nature of the excitation would be responsible for generating the anapole mode, our approach would provide a simple, straightforward alternate path to excite anapole mode that has been predicted to give rise to enhanced nonlinear effects, nanolasers, ideal magnetic scattering, as well as extremely high Q-factor and near-field enhancements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属纳米粒子将光限制在非常小的体积内(小到几十纳米)的能力已经发展成为新型的小型化光学和电子器件。然而,与贵金属和加热相关的高水平损耗一直是限制光学器件效率的挑战。在这方面,有一个“新的孩子在块”,即电动“模拟”模式(即。(希腊语中的“无极”),可以通过最小化辐射损失来克服这些问题。该提案计划探索与高折射率介电纳米球(硅纳米颗粒)相关的准极点模式,该模式可以作为无辐射源,并通过最小化辐射损失有效地限制能量。从我们的研究中获得的知识可以潜在地转化为可以开发成新型光学和光子器件的原型,如纳米激光器,宽带光电探测器,传感器等。我们的研究还将通过提供本科生参与尖端实验研究,将研究整合到课程中,以及与外部合作者和科学家建立联系的机会来增强本科教育,这将有助于激励我们的学生选择STEM职业道路,包括来自代表性不足的社区的学生。电介质粒子的共振光激发为未来的光学和纳米光子器件提供了独特的机会,因为它们减少了耗散损耗,并且电场和磁场的近场都有很大的共振增强。在这方面,在高折射率介质材料中作为非辐射源的电动力学“拟极模式”的发现为实现新型纳米光子器件提供了一个独特的平台。在特定条件下,高折射率介质纳米结构的内部模式(磁性和环形)的叠加可以产生无辐射状态,称为“反极态”,没有辐射损耗。尽管对非辐射物体的研究长期以来一直是基础物理学的一部分,但与光学频率中随时间变化的振荡电荷电流分布相对应的动态模拟极点直到2015年才在实验中得到证实。由于球面几何结构不适合平面波照射下的反极点模式激发,因此所演示的结构中反极点模式的激发依赖于高度专门化结构(Si纳米盘)的设计。然而,尽管为特定的模拟极点条件构建了纳米片,但纳米片无法产生“理想”的模拟极点模式。在这里,我们提出在各向同性纳米球中激发类似极点模式,而不是专门设计结构。由于平面波照明不适合在纳米球中激发准极点模式,我们将利用圆柱矢量光束的偏振对称性来激发各向同性纳米球中的“理想”准极点模式。更具体地说,我们将利用径向极化圆柱矢量光束焦平面上的径向电场分布和磁场的缺失来激发理想的拟极点模式。由于激发的性质将负责产生模拟模,我们的方法将提供一个简单,直接的替代路径来激发模拟模,该模拟模被预测会产生增强的非线性效应,纳米激光,理想的磁散射,以及极高的q因子和近场增强。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selective excitation and enhancement of multipolar resonances in dielectric nanospheres using cylindrical vector beams
- DOI:10.1063/1.5132791
- 发表时间:2020-01-21
- 期刊:
- 影响因子:3.2
- 作者:Manna, Uttam;Sugimoto, Hiroshi;Fujii, Minoru
- 通讯作者:Fujii, Minoru
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uttam Manna其他文献
Chemically selective raising and rolling of oil-droplets underwater: an equipment-free chemical sensing method
水下油滴的化学选择性升起和滚动:一种无需设备的化学传感方法
- DOI:
10.1039/d3cc01540h - 发表时间:
2023-01-01 - 期刊:
- 影响因子:4.200
- 作者:
Angana Borbora;Jaysri Das;Uttam Manna - 通讯作者:
Uttam Manna
Strategies to modulate underwater oil wettability and adhesion
调节水下油润湿性和粘附性的策略
- DOI:
10.1016/j.cis.2025.103442 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:19.300
- 作者:
Angana Borbora;Uttam Manna - 通讯作者:
Uttam Manna
Underwater superoleophobic and magnetic hydrogel for cascade chemical reactions
用于级联化学反应的水下超疏油磁性水凝胶
- DOI:
10.1039/d4cc04432k - 发表时间:
2024-10-23 - 期刊:
- 影响因子:4.200
- 作者:
Hrisikesh Sarma;Subhankar Mandal;Saurav Kumar;Uttam Manna - 通讯作者:
Uttam Manna
Polymerization of monomer aggregates for tailoring and patterning water wettability
用于定制和图案化水润湿性的单体聚集体的聚合
- DOI:
10.1039/d3cc05172b - 发表时间:
2024-01-04 - 期刊:
- 影响因子:4.200
- 作者:
Manideepa Dhar;Chittaranjan Mishra;Avijit Das;Uttam Manna - 通讯作者:
Uttam Manna
Covalent crosslinking chemistry for controlled modulation of nanometric roughness and surface free energy
用于纳米粗糙度和表面自由能的可控调节的共价交联化学
- DOI:
10.1039/d3sc06077b - 发表时间:
2024-03-27 - 期刊:
- 影响因子:7.400
- 作者:
Debasmita Sarkar;Manideepa Dhar;Avijit Das;Sohini Mandal;Anirban Phukan;Uttam Manna - 通讯作者:
Uttam Manna
Uttam Manna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uttam Manna', 18)}}的其他基金
RUI: Unraveling Novel Nanophotonic Effects in Mid-Index Micro-Sized Dielectric Materials
RUI:揭示中折射率微米介电材料中的新型纳米光子效应
- 批准号:
2208240 - 财政年份:2022
- 资助金额:
$ 13.56万 - 项目类别:
Continuing Grant
相似海外基金
Cherenkov luminescence mediated excitation of discrete lanthanide optical probes
切伦科夫发光介导的离散镧系元素光学探针的激发
- 批准号:
10876727 - 财政年份:2023
- 资助金额:
$ 13.56万 - 项目类别:
High-speed processing of low-loss optical waveguides by controlling the distribution of electron excitation using spatial light modulation
通过空间光调制控制电子激发分布来高速处理低损耗光波导
- 批准号:
22K20399 - 财政年份:2022
- 资助金额:
$ 13.56万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Excitation transfer and optical properties of quantum aggregates
量子聚集体的激发传递和光学性质
- 批准号:
502194687 - 财政年份:2022
- 资助金额:
$ 13.56万 - 项目类别:
Heisenberg Grants
Designer Photonic Lattices and Multilayer Structures that support Bound Optical Modes and Electrically-driven Excitation
支持束缚光模式和电驱动激励的设计光子晶格和多层结构
- 批准号:
2207215 - 财政年份:2022
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
Visualization of atomic and molecule excitation/ionization processes with ultra-short (attosecond) and optical gated (femtosecond) laser pulses and study of high harmonic generation (HHG) in a filament
使用超短(阿秒)和光门控(飞秒)激光脉冲可视化原子和分子激发/电离过程,并研究灯丝中的高次谐波产生 (HHG)
- 批准号:
RGPIN-2017-06181 - 财政年份:2021
- 资助金额:
$ 13.56万 - 项目类别:
Discovery Grants Program - Individual
Cherenkov luminescence mediated excitation of discrete lanthanide optical probes
切伦科夫发光介导的离散镧系元素光学探针的激发
- 批准号:
10380890 - 财政年份:2021
- 资助金额:
$ 13.56万 - 项目类别:
Cherenkov luminescence mediated excitation of discrete lanthanide optical probes
切伦科夫发光介导的离散镧系元素光学探针的激发
- 批准号:
10215707 - 财政年份:2021
- 资助金额:
$ 13.56万 - 项目类别:
Visualization of atomic and molecule excitation/ionization processes with ultra-short (attosecond) and optical gated (femtosecond) laser pulses and study of high harmonic generation (HHG) in a filament
使用超短(阿秒)和光门控(飞秒)激光脉冲可视化原子和分子激发/电离过程,并研究灯丝中的高次谐波产生 (HHG)
- 批准号:
RGPIN-2017-06181 - 财政年份:2020
- 资助金额:
$ 13.56万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast quantum path interferometry for optical excitation path selection
用于光激发路径选择的超快量子路径干涉测量
- 批准号:
19K22141 - 财政年份:2019
- 资助金额:
$ 13.56万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
SBIR Phase II: Optical Delivery System for In Situ Heating and Excitation in the Transmission Electron Microscope
SBIR 第二阶段:透射电子显微镜中原位加热和激发的光学传输系统
- 批准号:
1853201 - 财政年份:2019
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant