Cyber-Physical Systems Security through Robust Adaptive Possibilitistic Algorithms: a Cross Layered Framework

通过鲁棒自适应可能性算法实现网络物理系统安全:跨层框架

基本信息

  • 批准号:
    1809739
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to develop a cross-layer cyber-physical security framework for the smart grid. The proposed research will improve the quality of real-time monitoring of the smart grid through anomaly analysis. This will lead to more reliable data for control, situation awareness to first responders and other improved applications to smart grids. The proposed research will improve the resilience of smart grids to cyber-attacks in meters, parameters, topology and communication infrastructure and large physical disturbances by developing new techniques for distributed control of large complex systems that guarantees secure and reliable performance. The project will foster education through enhancement to curriculum by building bridges among communications, machine learning, power and control systems. The PIs plan to teach short courses on smart grid security at conferences. In addition, they plan to engage under-represented minority students in their project. The project aims at developing a distributed nonlinear controller for transient stability enhancement. The new control layer will actuate on distributed energy storage systems, be robust to uncertainties in modelling and capable of compensating input time-delay while independent of operating conditions. Furthermore, the robust controller will not require exact knowledge of the system dynamics. Second, bad data analytics based on the innovation approach and cross-layered information provided by distributed software-defined network will be developed. The bad data analytics will consider the inherent interdependencies of the physical processes while providing a countermeasure. Third, an adaptive distributed robust machine learning approach will be developed. The overwhelming majority of supervised machine learning methods require large amounts of carefully labeled training data that is representative of the data distribution to be seen under test. However, in security applications, novel threats and malicious attacks are continuously being developed and attempted. Thus, approaches that rely on prior training data are unlikely to be robust in the case of behaviors never seen before, as would be the case in a rapidly changing threat environment. The novel distributed machine intelligence method that will be developed will be focused on being rapidly adaptive to identifying and distinguishing novel threats given even only one example of an anomalous novel threat.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是为智能电网开发一个跨层网络物理安全框架。本研究将通过异常分析提高智能电网的实时监测质量。这将为控制带来更可靠的数据,为急救人员提供态势感知,并改善智能电网的其他应用。拟议的研究将通过开发大型复杂系统分布式控制的新技术,提高智能电网对仪表、参数、拓扑和通信基础设施以及大型物理干扰的网络攻击的恢复能力,确保安全可靠的性能。该项目将通过在通信、机器学习、电力和控制系统之间建立桥梁,通过加强课程来促进教育。pi计划在会议上讲授有关智能电网安全的短期课程。此外,他们还计划让代表性不足的少数族裔学生参与他们的项目。该项目旨在开发一种分布式非线性控制器来增强暂态稳定性。新的控制层将驱动分布式储能系统,对建模中的不确定性具有鲁棒性,并且能够在独立于运行条件的情况下补偿输入时滞。此外,鲁棒控制器将不需要精确的系统动力学知识。其次,发展基于分布式软件定义网络提供的创新方法和跨层信息的坏数据分析。坏数据分析将在提供对策的同时考虑物理过程的内在相互依赖性。第三,将开发自适应分布式鲁棒机器学习方法。绝大多数监督式机器学习方法需要大量精心标记的训练数据,这些数据代表了待测数据的分布。然而,在安全应用中,新的威胁和恶意攻击不断被开发和尝试。因此,依赖于先前训练数据的方法在以前从未见过的行为的情况下不太可能是健壮的,就像在快速变化的威胁环境中一样。将开发的新型分布式机器智能方法将专注于快速适应识别和区分新威胁,即使只有一个异常新威胁的例子。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model
Non-intrusive load monitoring using artificial intelligence classifiers: Performance analysis of machine learning techniques
  • DOI:
    10.1016/j.epsr.2021.107347
  • 发表时间:
    2021-05-15
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Monteiro, R. V. A.;de Santana, J. C. R.;Poma, C. E. P.
  • 通讯作者:
    Poma, C. E. P.
WAMs Based Eigenvalue Space Model for High Impedance Fault Detection
基于 WAM 的高阻抗故障检测特征值空间模型
  • DOI:
    10.3390/app112412148
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paramo, Gian;Bretas, Arturo S.
  • 通讯作者:
    Bretas, Arturo S.
Ensemble CorrDet with adaptive statistics for bad data detection
  • DOI:
    10.1049/iet-stg.2020.0029
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keerthiraj Nagaraj;Sheng Zou;Cody Ruben;S. Dhulipala;Allen Starke;A. Bretas;A. Zare;J. Mcnair
  • 通讯作者:
    Keerthiraj Nagaraj;Sheng Zou;Cody Ruben;S. Dhulipala;Allen Starke;A. Bretas;A. Zare;J. Mcnair
Renewable and energy storage resources for enhancing transient stability margins: A PDE-based nonlinear control strategy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arturo Bretas其他文献

Microgrid Frequency Stability: A Proactive Scheme Based on Dynamic Predictions
微电网频率稳定:基于动态预测的主动方案
Communication Network Layer State Estimation Measurement Model for a Cyber-Secure Smart Grid
网络安全智能电网的通信网络层状态估计测量模型
Tri-Level Linear Programming Model for Automatic Load Shedding Using Spectral Clustering
使用谱聚类自动减载的三级线性规划模型
Towards Smart Grids Enhanced Situation Awareness: A Bi-Level Quasi-Static State Estimation Model
迈向智能电网增强态势感知:双层准静态状态估计模型
Reduced-Order Models of Static Power Grids Based on Spectral Clustering
基于谱聚类的静态电网降阶模型

Arturo Bretas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
  • 批准号:
    2339774
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Conference: CPS: NSF Student Travel Grant for 2024 Cyber-Physical Systems and Internet-of-Things Week (CPS-IoT Week)
会议:CPS:2024 年网络物理系统和物联网周(CPS-IoT Week)的 NSF 学生旅行补助金
  • 批准号:
    2422416
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Career: Learning-Enabled Medical Cyber-Physical Systems
职业:支持学习的医疗网络物理系统
  • 批准号:
    2339637
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
CRII: CNS: Supporting Resilient Perception in Autonomous Cyber-physical Systems
CRII:CNS:支持自主网络物理系统中的弹性感知
  • 批准号:
    2348349
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
SHF: Small: A Hybrid Synchronous Language for Verifiable Execution of Cyber-Physical Systems
SHF:Small:一种用于网络物理系统可验证执行的混合同步语言
  • 批准号:
    2348706
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了