Electrodynamic Wheel Maglev Vehicle Control using an Integrated Eddy Current Approach
使用集成涡流方法的电动轮磁悬浮车辆控制
基本信息
- 批准号:1810489
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Electrodynamic Wheel Maglev Vehicle Control using an Integrated Eddy Current ApproachAbstract: Maglev vehicles utilize magnetic fields in order to create suspension, propulsion and guidance forces without physical contact and thus speeds well in excess of 300 miles/hour are possible. Maglev can offer trip times that are competitive with air travel. The lack of frictional forces between the vehicle and the guideway, and maglev's low energy consumption compared to aircraft means that the operational costs, once the transportation system has been developed, should be low. Furthermore, whereas aircraft rely solely on petroleum and consequently create a large amount of air pollutants, maglev vehicles derive electric power from many renewable energy sources. Recently there has been renewed interest in maglev vehicle technology because of the SpaceX Hyperloop proposal to use high-speed vehicles within partially evacuated tubes or tunnels. By reducing air resistance, vehicle speeds up to 800 mile/hour could be achievable. Such speeds cannot be achieved using high-speed rail. Also, unlike high-speed rail, maglev vehicles have the ability to accelerate rapidly, climb steep grades, negotiate tight turns and operate in extremely adverse weather conditions. Maglev vehicles enable lighter weight and smaller vehicles to be utilized and their inherently quiet operation eliminates the need for costly noise abatement in urban environments. Despite maglev's many attractive characteristics U.S. firms and Transit authorities have been reluctant to invest in this technology. Overseas, high-speed rail has been extensively used rather than maglev. The reason for this is undoubtedly, in part, due to maglev's extremely high initial capital cost. This research seeks to use an electrodynamic wheel driven maglev vehicle to demonstrate that a low development risk, low capital-intensive maglev vehicle that is robust, affordable and energy efficient can be developed. The use of electrodynamic wheels could radically reduce maglev's system costs because the thrust, suspension and guidance force can be achieved by utilizing only flat non magnetic aluminum guideways. This also enables directional switching to be achieved in a simple low-cost way. This research project will contribute to the education and awareness of power engineering as an exciting area for research. High school and graduate students will assist with this project at all levels. The principal investigator will monitor the retention of minority students within the electrical engineering undergraduate program with the goal of increasing the retention rate through summer and academic semester research experiences. The research will be published in leading control and magnetics journals. The research will focus on demonstrating the control and performance capabilities of electrodynamic wheel maglev vehicles. By electromechanically rotating Halbach magnetic rotor's over flat aluminum sheet guideways eddy currents are induced that can simultaneously provide both the suspension and thrust force. By actively controlling the rotational speeds lateral and angular stability can be achieved. The electrodynamic wheels will be controlled by making use of recently derived 3-D eddy current force, torque, magnetic stiffness and magnetic damping equations. The 6-degrees of freedom dynamic control will be validated by utilizing two existing sub-scale electrodynamic wheel maglev setups. Following this a full-scale electrodynamic wheel maglev setup will be constructed that will be capable of supporting and transporting a 100kg mass around a 108 foot oval-shaped test track. This research will involve the development of new integrated eddy current control strategies. By using exact 3-D analytic based eddy-current equations more precise and predictive control approaches can be utilized. Insightful trade-offs between stability requirements, efficiency, thrust and suspension levels will be considered. This research could lead to new methodologies for controlling 3-D eddy-current based machines. Multivariable state-space predictive control techniques will be employed in order to ensure stability of the complexly coupled device.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
职务名称:电动轮磁悬浮车辆控制使用的集成涡流方法摘要:磁悬浮车辆利用磁场,以创造悬浮,推进和指导力,没有物理接触,因此速度超过300英里/小时是可能的。 磁悬浮列车可以提供与航空旅行竞争的旅行时间。车辆和导轨之间缺乏摩擦力,而且磁悬浮列车与飞机相比能耗低,这意味着一旦交通系统开发完毕,运营成本应该很低。 此外,飞机完全依赖石油,因此会产生大量的空气污染物,而磁悬浮车辆则从许多可再生能源中获得电力。 最近,人们对磁悬浮车辆技术重新产生了兴趣,因为SpaceX Hyperloop提出在部分真空管道或隧道内使用高速车辆。 通过减少空气阻力,车辆速度可达到800英里/小时。 这样的速度是高速铁路无法达到的。 此外,与高速铁路不同,磁悬浮车辆能够快速加速,爬陡坡,通过急转弯,并在极端恶劣的天气条件下运行。 磁悬浮车辆使重量更轻、更小的车辆能够被利用,并且它们固有的安静运行消除了在城市环境中昂贵的噪音消减的需要。尽管磁悬浮列车有许多吸引人的特点,但美国公司和交通部门一直不愿意投资这项技术。 在国外,高速铁路已被广泛使用,而不是磁悬浮。其部分原因无疑是由于磁悬浮的初始资本成本极高。 本研究旨在使用电动轮驱动的磁悬浮车辆,以证明一个低开发风险,低资本密集型的磁悬浮车辆,是强大的,负担得起的和能源效率可以开发。 电动轮的使用可以从根本上降低磁悬浮系统的成本,因为推力,悬浮力和导向力可以通过仅使用平面非磁性铝导轨来实现。这也使得能够以简单的低成本方式实现定向切换。 这个研究项目将有助于教育和认识电力工程作为一个令人兴奋的研究领域。 高中生和研究生将在各级协助这个项目。首席研究员将监测少数民族学生在电气工程本科课程内的保留情况,目标是通过夏季和学术学期的研究经验提高留存率。 该研究将发表在领先的控制和磁学期刊上。该研究将重点展示电动轮磁悬浮车辆的控制和性能能力。通过机电旋转海尔贝克磁转子的平面铝片导轨涡电流感应,可以同时提供悬浮力和推力。通过主动控制旋转速度,可以实现横向和角度稳定性。电动轮的控制将利用最近导出的三维涡流力,转矩,磁刚度和磁阻尼方程。6自由度的动态控制将通过利用两个现有的亚尺度电动轮磁悬浮装置进行验证。在此之后,将建造一个全尺寸的电动轮磁悬浮装置,该装置将能够围绕108英尺的椭圆形测试轨道支撑和运输100公斤的质量。 这项研究将涉及新的集成涡流控制策略的发展。通过使用精确的基于三维解析的涡流方程,可以利用更精确和预测的控制方法。将考虑在稳定性要求、效率、推力和悬挂水平之间进行有见地的权衡。这项研究可能会导致新的方法来控制三维涡流为基础的机器。将采用多变量状态空间预测控制技术,以确保复杂耦合设备的稳定性。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Electrodynamic Wheel Maglev Vehicle with a Passive U-Guideway
- DOI:10.1109/icems56177.2022.9983010
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Colton Bruce;J. Bird;Matthew Grubbs;Zhongkai Zheng;D.T. Drake;Anh Doane;Yew Tin Lee;Jon Seeboth-Jon
- 通讯作者:Colton Bruce;J. Bird;Matthew Grubbs;Zhongkai Zheng;D.T. Drake;Anh Doane;Yew Tin Lee;Jon Seeboth-Jon
Examination of the Stiffness Terms needed to Model the Dynamics of an Eddy Current based Maglev Vehicle
检查基于涡流的磁悬浮车辆动力学建模所需的刚度项
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Bruce, Colton;Bird, Jonathan
- 通讯作者:Bird, Jonathan
Lift Force Analysis for an Electrodynamic Wheel Maglev Vehicle
电动轮磁悬浮车辆的升力分析
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Bruce, Colton;Grubbs, Matthew;Bird, Jonathan
- 通讯作者:Bird, Jonathan
Analytic Damping and Stiffness Analysis for a 4-DOF Electrodynamic Wheel Maglev Vehicle
- DOI:10.1109/icelmach.2018.8506767
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:J. Wright;J. Bird
- 通讯作者:J. Wright;J. Bird
A Review of Integrated Propulsion, Suspension and Guidance Passive Guideway Maglev Technologies
推进、悬挂、制导一体化无源导轨磁悬浮技术综述
- DOI:10.1109/ldia.2019.8770983
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bird, Jonathan Z.
- 通讯作者:Bird, Jonathan Z.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Bird其他文献
光渦照射によって作製したC_<60>光重合体の伝導特性評価
光涡流辐照制备的C_<60>光聚合物的导电性能评价
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Naoto Toriumi;Tatsuya Doi;Daiki Momiyama;Wataru Akiyama;Katsuhiko Miyamoto;Takashige Omatsu;Jonathan Bird;Yuichi Ochiai;Nobuyuki Aoki - 通讯作者:
Nobuyuki Aoki
Correction to: Quantitative topographic anatomy of the femoral ACL footprint: a micro-CT analysis
- DOI:
10.1007/s11517-017-1753-4 - 发表时间:
2017-11-13 - 期刊:
- 影响因子:2.600
- 作者:
Danielle G. Norman;Alan Getgood;John Thornby;Jonathan Bird;Glen A. Turley;Tim Spalding;Mark A. Williams - 通讯作者:
Mark A. Williams
光渦照射によって作製したC60光重合体の伝導特性評価
光涡流辐照制备的C60光聚合物的导电性能评价
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Naoto Toriumi;Tatsuya Doi;Daiki Momiyama;Wataru Akiyama;Katsuhiko Miyamoto;Takashige Omatsu;Jonathan Bird;Yuichi Ochiai;Nobuyuki Aoki - 通讯作者:
Nobuyuki Aoki
White Nano-light-source for Optical Nanoimaging with TERS
用于 TERS 光学纳米成像的白色纳米光源
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shaohua Xiang;Yuichi Ochiai;Nobuyuki Aoki;Jonathan Bird;Prabhat Verma - 通讯作者:
Prabhat Verma
High-Resolution Nanoimaging with Tip-Enhanced Raman Spectroscopy
使用尖端增强拉曼光谱进行高分辨率纳米成像
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shaohua Xiang;Kazutoshi Fuji;Syun Sato;Shiran Xiao;Nobuyuki Aoki;Jonathan Bird;and Yuichi Ochiai;Prabhat Verma - 通讯作者:
Prabhat Verma
Jonathan Bird的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Bird', 18)}}的其他基金
PFI-TT: Redefining Electromechanical Energy Conversion Through the use of Magnetic Gearboxes
PFI-TT:通过使用磁力齿轮箱重新定义机电能量转换
- 批准号:
1827801 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
An Investigation into the Performance of Magnetically Geared Devices for Marine Hydrokinetic and Wind Applications
用于海洋流体动力学和风力应用的磁力齿轮装置的性能研究
- 批准号:
1636704 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Without Spin Injection
合作研究:无需自旋注入的自旋电子学
- 批准号:
1509221 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
An Investigation into the Performance of Magnetically Geared Devices for Marine Hydrokinetic and Wind Applications
用于海洋流体动力学和风力应用的磁力齿轮装置的性能研究
- 批准号:
1408310 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Development of a Low Cost Form of Maglev Transportation Using Electrodynamic Wheels
使用电动轮开发低成本磁悬浮运输
- 批准号:
0925941 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
基于paddle-wheel机制的高离子电导率固态电解质的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Quiet car wheel technology
I-Corps:静音车轮技术
- 批准号:
2311803 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Development of integrated drilling for integlly formed glass-plastic parts by 3D printed grinding wheel
3D打印砂轮一体成型玻塑件一体化钻孔开发
- 批准号:
23K03630 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High efficiency mirror-like surface grinding with heat-assisted polish truing of coarse grain cBN wheel
粗晶cBN砂轮热辅助抛光整修高效镜面磨削
- 批准号:
23K03625 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Project Additive: Wheel motor and Active suspension
项目添加剂:轮毂电机和主动悬架
- 批准号:
10067518 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
BEIS-Funded Programmes
Ultrasonic Instrumented Wheelset for Wheel-Rail Friction Management and Contact Monitoring : Turning a Revenue Service Vehicle to a High-Speed VTI Measurement System
用于轮轨摩擦管理和接触监测的超声波仪表轮组:将税务服务车辆转变为高速 VTI 测量系统
- 批准号:
10040500 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
Development of Rotaxanes from High-Molecular-Weight Axle and Wheel Components
利用高分子车轴和车轮部件开发轮烷
- 批准号:
23KJ0018 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Wheel design and testing for Lunar skid-steer micro-rovers
月球滑移微型月球车的车轮设计和测试
- 批准号:
575005-2022 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
University Undergraduate Student Research Awards
Properties of wheel running as reinforcement and as an operant
车轮运行作为强化物和操作物的特性
- 批准号:
DDG-2020-00010 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Development Grant
Advancing the state of the art in wheel-rail interface characterization and control.
推进轮轨界面表征和控制的最先进技术。
- 批准号:
RGPIN-2022-05322 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Grinding wheel grooving: innovative and feasible solutions for Canadian manufacturing industries to adopt to significantly reduce costly grinding-burn-induced waste and increase productivity and reliability
砂轮开槽:加拿大制造业采用的创新且可行的解决方案,可显着减少昂贵的磨削烧伤浪费并提高生产率和可靠性
- 批准号:
RGPIN-2020-07025 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual