Understanding the Hardening Mechanisms Associated with Short-Range Atom Clusters in High Entropy Alloys

了解高熵合金中与短程原子团簇相关的硬化机制

基本信息

  • 批准号:
    1810720
  • 负责人:
  • 金额:
    $ 33.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-15 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical and computational research and education on mechanical behaviors of metallic materials. Metals and alloys are the workhorse materials for the manufacturing industry and structural applications. This is mainly because they have a good balance of strength, a metal's resistance to deformation and failure, and ductility, a metal's ability to undergo irreversible deformation before rupture. Usually there is a strength-ductility tradeoff, a gain in strength in a material is inevitably accompanied by a sacrifice in ductility. High entropy alloys are a new class of materials that contain nearly equal numbers of atoms of five or more different elements. Their unconventional concentrated multiple element compositions hold promise for achieving an exceptional combination of strength and ductility. However, the fundamental mechanisms that control the strength and ductility in high entropy alloys down to the atomic scale remain largely unexplored. This project focuses on investigation of the microscopic deformation mechanisms in high entropy alloys. Effects of the composition fluctuations on deformation processes mediated by defects in the periodic arrangement of atoms in the alloy will be studied by computer simulations on the scale of atoms; the results will be further compared with experiments. The physical insights gained will be important for guiding the future development of new high entropy alloys with a superior strength-ductility combination. The project will foster collaborations between theory and experiment. Educational activities will offer opportunities to introduce students to computer modeling techniques for simulating materials and to inspire students to pursue careers in science and engineering.TECHNICAL SUMMARYThis award supports theoretical and computational research and education to advance the fundamental understanding of deformation mechanisms in high entropy alloys. Strength and ductility are among the most important mechanical properties of metals and alloys for engineering applications. High entropy alloys contain high concentrations of five or more different elements in near equiatomic proportions. The mechanisms controlling the strength and ductility of high entropy alloys remain poorly understood. This project is focused on understanding the mechanistic role of short-range clusters in the strain hardening and tensile ductility of face-centered cubic high entropy alloys. Multi-component interatomic potentials will be used to perform molecular dynamics and atomistic reaction pathway simulations for studying the dislocation pinning and cross-slip processes mediated by short-range clusters. Effects of stress, temperature, cluster size and density will be investigated. The modeling results will be compared with experimental characterizations of dislocation mechanisms and deformation microstructures. The insights gained are important for harnessing the short-range clusters to achieve a superior strength-ductility combination in high entropy alloys. The project will introduce advanced modeling techniques to students. The research results will be incorporated into a high-school course module as well as a graduate course on micromechanics. Undergraduate students will be involved in the research. These educational activities are aimed to inspire students to pursue careers in science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持金属材料力学行为的理论和计算研究和教育。金属和合金是制造业和结构应用的主力材料。这主要是因为它们具有良好的强度平衡,金属对变形和失效的抵抗力,以及延展性,金属在断裂前经历不可逆变形的能力。通常存在强度-延展性的折衷,材料强度的增加不可避免地伴随着延展性的牺牲。高熵合金是一种新的材料,含有几乎相等数量的五种或五种以上不同元素的原子。其非常规的浓缩多元素组合物有望实现强度和延展性的卓越组合。然而,控制高熵合金的强度和延展性的基本机制在原子尺度上仍然没有被探索。本计画主要研究高熵合金的微观变形机制。将通过原子尺度的计算机模拟研究合金中原子周期性排列缺陷对变形过程的影响;将进一步将结果与实验进行比较。获得的物理见解将是重要的指导未来发展的新的高熵合金与上级强度-延展性的组合。该项目将促进理论和实验之间的合作。教育活动将为学生提供机会,介绍计算机模拟材料的建模技术,并激励学生追求科学和工程的职业生涯。技术总结该奖项支持理论和计算研究和教育,以促进对高熵合金变形机制的基本理解。强度和延展性是工程应用中金属和合金最重要的机械性能之一。高熵合金包含五种或五种以上不同元素的高浓度,接近等原子比例。控制高熵合金强度和延展性的机制仍然知之甚少。这个项目的重点是理解短程团簇在面心立方高熵合金的应变硬化和拉伸延展性中的机械作用。多组分原子间相互作用势将被用于进行分子动力学和原子反应途径模拟,以研究短程团簇介导的位错钉扎和交叉滑移过程。将研究应力、温度、团簇大小和密度的影响。模拟结果将与位错机制和变形组织的实验表征进行比较。所获得的见解是重要的利用短程集群,以实现一个上级的强度和延展性的组合在高熵合金。该项目将向学生介绍先进的建模技术。研究结果将纳入一个高中课程单元以及一个关于微观力学的研究生课程。本科生将参与研究。这些教育活动旨在激励学生追求科学和工程事业。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trans-twin dislocations in nanotwinned metals
  • DOI:
    10.1016/j.scriptamat.2023.115348
  • 发表时间:
    2023-02-16
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Bu, Linfeng;Cheng, Zhao;Lu, Lei
  • 通讯作者:
    Lu, Lei
Unraveling dual phase transformations in a CrCoNi medium-entropy alloy
  • DOI:
    10.1016/j.actamat.2021.117112
  • 发表时间:
    2021-06-30
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Chen, Yujie;Chen, Dengke;Xie, Zonghan
  • 通讯作者:
    Xie, Zonghan
Learning constitutive relations of plasticity using neural networks and full-field data
  • DOI:
    10.1016/j.eml.2022.101645
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Yin Zhang;Qing‐Jie Li;Ting Zhu;Ju Li
  • 通讯作者:
    Yin Zhang;Qing‐Jie Li;Ting Zhu;Ju Li
Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing
  • DOI:
    10.1038/s41586-022-04914-8
  • 发表时间:
    2022-08-03
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Ren, Jie;Zhang, Yin;Chen, Wen
  • 通讯作者:
    Chen, Wen
Microstructure and mechanical behavior of additively manufactured CoCrFeMnNi high-entropy alloys: Laser directed energy deposition versus powder bed fusion
  • DOI:
    10.1016/j.actamat.2023.118884
  • 发表时间:
    2023-03-31
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Liu, Yanfang;Ren, Jie;Chen, Wen
  • 通讯作者:
    Chen, Wen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ting Zhu其他文献

Zoledronic acid sensitizes rhabdomyosarcoma cells to cytolysis mediated by human γδ T cells.
Zoledronic Acid 使横纹肌肉瘤细胞对人 γδ T 细胞介导的细胞溶解敏感。
  • DOI:
    10.3892/ol.2017.6894
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ling;Zhengliang Zhang;Ying;Shengdong Wang;Heng;Binghao Li;Ting Zhu;Zhaoming Ye
  • 通讯作者:
    Zhaoming Ye
Viabahn Open Revascularization Technique for Renal Artery Revascularization Reduces Renal Ischemia in Thoracoabdominal Aortic Aneurysm Hybrid Open-Endovascular Repair
用于肾动脉血运重建的 Viabahn 开放式血运重建技术可减少胸腹主动脉瘤的肾缺血 混合式开放式血管内修复
  • DOI:
    10.1016/j.avsg.2019.05.031
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Yuan Fang;Yi Si;Jue Yang;Jianing Yue;Bin Chen;Ting Zhu;Weiguo Fu
  • 通讯作者:
    Weiguo Fu
Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance
轻松制造空心 CuO 纳米立方体以增强锂/钠存储性能
  • DOI:
    10.1039/d1ce00704a
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Jie Zhao;Yuyan Zhao;Wen-Ce Yue;Shu-Min Zheng;Xue Li;Ning Gao;Ting Zhu;Yu-Jiao Zhang;Guang-Ming Xia;Bao Wang
  • 通讯作者:
    Bao Wang
AIS Electronic Library (AISeL) Why Viewers Contribute in Live Feed Broadcast
Simultaneous Bi-Directional Communications and Data Forwarding Using a Single ZigBee Data Stream
使用单个 ZigBee 数据流同时进行双向通信和数据转发
  • DOI:
    10.1109/tnet.2021.3054339
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zicheng Chi;Yan Li;Hongyu Sun;Zhichuan Huang;Ting Zhu
  • 通讯作者:
    Ting Zhu

Ting Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ting Zhu', 18)}}的其他基金

CAREER: Synergistic Cross-IoT N-Way Sensing using Wireless Traffic in the Edge
职业:在边缘使用无线流量进行协同跨物联网 N 路传感
  • 批准号:
    2316605
  • 财政年份:
    2023
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Continuing Grant
Collaborative Research : SWIFT : Effective Spectrum Utilization for Coexisting Active, Semi-passive, and Passive IoT Systems
合作研究:SWIFT:共存主动、半被动和被动物联网系统的有效频谱利用
  • 批准号:
    2305246
  • 财政年份:
    2022
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant
Collaborative Research : SWIFT : Effective Spectrum Utilization for Coexisting Active, Semi-passive, and Passive IoT Systems
合作研究:SWIFT:共存主动、半被动和被动物联网系统的有效频谱利用
  • 批准号:
    2127908
  • 财政年份:
    2021
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Investigation of Microscale Residual Stresses in Additively Manufactured Stainless Steel
合作研究:增材制造不锈钢中微尺度残余应力的基础研究
  • 批准号:
    2004412
  • 财政年份:
    2020
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: A Spectrum-Efficient and Secure Communication Architecture for Smart Cities
SpecEES:协作研究:智慧城市的频谱高效且安全的通信架构
  • 批准号:
    1824491
  • 财政年份:
    2018
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Brittle-to-Ductile Transition and Strength of Silicon Nanowires at Elevated Temperatures
合作研究:高温下硅纳米线的脆性转变和强度
  • 批准号:
    1762463
  • 财政年份:
    2018
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant
CAREER: Synergistic Cross-IoT N-Way Sensing using Wireless Traffic in the Edge
职业:在边缘使用无线流量进行协同跨物联网 N 路传感
  • 批准号:
    1652669
  • 财政年份:
    2017
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Continuing Grant
Real-Time Indoor and Outdoor Simultaneous Localization and Mapping
实时室内外同步定位与建图
  • 批准号:
    1539047
  • 财政年份:
    2015
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Deformation Mechanisms Governing the Tensile Ductility of Twinned Metal Nanowires
合作研究:控制孪晶金属纳米线拉伸延展性的变形机制的研究
  • 批准号:
    1410331
  • 财政年份:
    2014
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Continuing Grant
CSR: Small: Energy-Shared Computing in Sustainable Sensor Networks
CSR:小型:可持续传感器网络中的能源共享计算
  • 批准号:
    1503590
  • 财政年份:
    2014
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant

相似海外基金

SaTC: CORE: Medium: Collaborative: Hardening Off-the-Shelf Software Against Side Channel Attacks
SaTC:核心:媒介:协作:强化现成软件以抵御侧通道攻击
  • 批准号:
    2425665
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Continuing Grant
Analytical study of yield point phenomena and work-hardening by dislocation accumulation modelbased on the multi-surface plasticity theory
基于多面塑性理论的位错累积模型对屈服点现象和加工硬化的分析研究
  • 批准号:
    23K03592
  • 财政年份:
    2023
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SLES: CRASH - Challenging Reinforcement-learning based Adversarial scenarios for Safety Hardening
SLES:CRASH - 挑战基于强化学习的安全强化对抗场景
  • 批准号:
    2331904
  • 财政年份:
    2023
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant
Strain-Hardening Mechanisms in Ferrous Bulk Nanostructured Metals: Towards Managing Ultra-high Strength and Large Ductility
黑色金属块体纳米结构金属的应变硬化机制:实现超高强度和大延展性
  • 批准号:
    23H00234
  • 财政年份:
    2023
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CAREER: Countering Emerging Software Threats with Adaptive Hardening, Debloating, and Hardware-assisted Protection
职业:通过自适应强化、反膨胀和硬件辅助保护来应对新兴软件威胁
  • 批准号:
    2238467
  • 财政年份:
    2023
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Continuing Grant
Development of sustainable strain-hardening geopolymer composites (SHGC)
可持续应变硬化地质聚合物复合材料(SHGC)的开发
  • 批准号:
    23KF0004
  • 财政年份:
    2023
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Hardening Mechanism of Geopolymer Concrete by Binderless Formulation
无粘结剂配方地聚合物混凝土的硬化机理
  • 批准号:
    22K12477
  • 财政年份:
    2022
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of Strain Hardening Cementitious Materials in Seismic Design and Retrofit of Structures
应变硬化胶凝材料在结构抗震设计与改造中的应用
  • 批准号:
    RGPIN-2022-05454
  • 财政年份:
    2022
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Discovery Grants Program - Individual
Mid-scale RI-1 (M1:DP): National Full-Scale Testing Infrastructure for Community Hardening in Extreme Wind, Surge, and Wave Events (NICHE)
中型 RI-1 (M1:DP):极端风、浪涌和波浪事件中社区强化的国家全面测试基础设施 (NICHE)
  • 批准号:
    2131961
  • 财政年份:
    2022
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Cooperative Agreement
Development of an automated precision Surface Hardening Process using Lasers (‘Sharp-LASE’)
使用激光 (Sharp-LASE) 开发自动化精密表面硬化工艺
  • 批准号:
    10037142
  • 财政年份:
    2022
  • 资助金额:
    $ 33.18万
  • 项目类别:
    BEIS-Funded Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了