Optimal Shrinkage and Empirical Bayes Prediction under Asymmetry, Censoring and Nonexchangeability

不对称、审查和不可交换性下的最优收缩和经验贝叶斯预测

基本信息

  • 批准号:
    1811866
  • 负责人:
  • 金额:
    $ 12.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

In every branch of big-data analytics, it is now commonplace to use notions of shrinkage in the construction of robust algorithms and predictors. The concept of shrinkage is important because it provides an elegant framework for combining information from related populations and often leads to substantial improvements in the performances of algorithms used for simultaneous inference. Driven by applications in a wide range of scientific problems over the last decade, the traditional roles of statistical shrinkage have rapidly evolved as new perspectives have been introduced to address and exploit complex, latent structural properties of modern datasets. These new applications often involve non-standard inferential attributes such as asymmetric predictive objectives as well as intricate modeling caveats, such as nonexchangeable prior structures and censored observations. These new age statistical problems pose challenges not only in developing flexible shrinkage algorithms but also in optimally tuning them to obtain efficient shrinkage properties. This project will develop new empirical Bayes predictive methods that possess optimal shrinkage properties and can produce significant enhancements over existing algorithms built on the mathematical convenience of symmetric loss functions and exchangeable prior structures.The common theme underlying this project is that of using optimal shrinkage properties to develop efficient predictive methods. Existing shrinkage algorithms rely heavily on decision theoretic identities that break down under asymmetry and nonexchangeability, and so, there is an urgent need to develop new statistical methodologies, theories, and algorithms. The PI will develop new conditionally linear decision rules for prediction under asymmetry in nonexchangeable Gaussian hierarchical models and will extend the proposed methodologies to non-Gaussian models as well as to settings with non-linear structural constraints. Additionally, optimal empirical Bayes rules will be developed that will work with censored data and can be used for prediction in multi-stage decision making scenarios with asymmetric objectives. The results developed in this project will provide practitioners with an improved understanding of where existing prediction approaches fail under asymmetry, censoring, and nonexchangeability and why algorithms specifically developed to operate under these conditions should be used.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大数据分析的每一个分支中,在构建强大的算法和预测器时使用收缩的概念现在是司空见惯的。收缩的概念是重要的,因为它提供了一个优雅的框架,从相关人群的信息相结合,并经常导致显着改善的性能,用于同时推理的算法。在过去十年中,在广泛的科学问题中的应用的驱动下,统计收缩的传统作用迅速发展,因为新的观点已经被引入来解决和利用现代数据集的复杂的潜在结构特性。这些新的应用通常涉及非标准的推理属性,如非对称预测目标以及复杂的建模警告,如不可交换的先验结构和删失观测。这些新的年龄统计问题提出了挑战,不仅在开发灵活的收缩算法,而且在优化调整它们,以获得有效的收缩性能。该项目将开发新的经验贝叶斯预测方法,具有最佳的收缩性能,并可以产生显着增强现有的算法建立在对称损失函数和可交换的先验结构的数学便利。该项目的共同主题是使用最佳的收缩性能,以开发有效的预测方法。现有的收缩算法在很大程度上依赖于决策理论的身份,打破下不对称和nonexchangeries,因此,迫切需要开发新的统计方法,理论和算法。PI将开发新的条件线性决策规则,用于非交换高斯分层模型中不对称条件下的预测,并将所提出的方法扩展到非高斯模型以及具有非线性结构约束的设置。此外,将开发最佳经验贝叶斯规则,这些规则将适用于删失数据,并可用于具有非对称目标的多阶段决策情景中的预测。在这个项目中开发的结果将为从业者提供一个更好的理解,现有的预测方法在不对称,审查和nonexchangeries下失败,以及为什么应该使用专门开发的算法在这些条件下运行。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On discrete priors and sparse minimax optimal predictive densities
关于离散先验和稀疏极小极大最优预测密度
  • DOI:
    10.1214/21-ejs1818
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Gangopadhyay, Ujan;Mukherjee, Gourab
  • 通讯作者:
    Mukherjee, Gourab
The Use of Single Cell Mass Cytometry to Define the Molecular Mechanisms of Varicella-Zoster Virus Lymphotropism
使用单细胞质量流式细胞仪确定水痘带状疱疹病毒趋淋巴细胞性的分子机制
  • DOI:
    10.3389/fmicb.2020.01224
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Sen, Nandini;Mukherjee, Gourab;Arvin, Ann M.
  • 通讯作者:
    Arvin, Ann M.
Improved Shrinkage Prediction under a Spiked Covariance Structure
尖峰协方差结构下改进的收缩预测
HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread
  • DOI:
    10.7554/elife.55487
  • 发表时间:
    2020-05-26
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Ma, Tongcui;Luo, Xiaoyu;Roan, Nadia R.
  • 通讯作者:
    Roan, Nadia R.
A Large-Scale Constrained Joint Modeling Approach for Predicting User Activity, Engagement, and Churn With Application to Freemium Mobile Games
  • DOI:
    10.1080/01621459.2019.1611584
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Trambak Banerjee;Gourab Mukherjee;S. Dutta;Pulak Ghosh
  • 通讯作者:
    Trambak Banerjee;Gourab Mukherjee;S. Dutta;Pulak Ghosh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gourab Mukherjee其他文献

Dramatic rate-enhancement of oxygen atom transfer by an iron(iv)-oxo species by equatorial ligand field perturbations.
通过赤道配体场扰动,铁(iv)-氧物种的氧原子转移速率显着增强。
  • DOI:
    10.1039/c8dt02142b
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Gourab Mukherjee;Calvin W Z Lee;Sayanta Sekhar Nag;A. Alili;Fabián G Cantú Reinhard;Devesh Kumar;C. Sastri;S. D. de Visser
  • 通讯作者:
    S. D. de Visser
Influence of induced steric on the switchover reactivity of mononuclear Cu(II)-alkylperoxo complexes
  • DOI:
    10.1016/j.ica.2018.09.087
  • 发表时间:
    2019-01-24
  • 期刊:
  • 影响因子:
  • 作者:
    Sayanta Sekhar Nag;Gourab Mukherjee;Prasenjit Barman;Chivukula V. Sastri
  • 通讯作者:
    Chivukula V. Sastri
Empirical Bayes Estimates for a 2-Way Cross-Classified Additive Model
2 路交叉分类加性模型的经验贝叶斯估计
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Brown;Gourab Mukherjee;A. Weinstein
  • 通讯作者:
    A. Weinstein
Implications of non-native metal substitution in carbonic anhydrase – engineered enzymes and models
非天然金属取代碳酸酐酶的意义——工程酶和模型
  • DOI:
    10.1039/d4cc05003g
  • 发表时间:
    2024-12-03
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Dyuti Bhandary;Sam P. de Visser;Gourab Mukherjee
  • 通讯作者:
    Gourab Mukherjee
Supplemental Information Mass Cytometric Analysis of HIV Entry , Replication , and Remodeling in Tissue CD 4 + T Cells
补充信息 组织 CD 4 T 细胞中 HIV 进入、复制和重塑的质量流式分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Cavrois;Trambak Banerjee;Gourab Mukherjee;Nandhini Raman;Rajaa Hussien;Brandon Aguilar Rodriguez;J. Vásquez;M. Spitzer;N. Lazarus;Jennifer J. Jones;C. Ochsenbauer;J. McCune;E. Butcher;A. Arvin;N. Sen;W. Greene;N. Roan
  • 通讯作者:
    N. Roan

Gourab Mukherjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Inactivation of Escherichia coli using high hydrostatic pressure from viewpoints of cell shrinkage and expansion
从细胞收缩和扩张的角度利用高静水压灭活大肠杆菌
  • 批准号:
    23K05105
  • 财政年份:
    2023
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel retail shrinkage/theft prevention approach for scan-&-go self checkout
用于扫描的新型零售防缩/防盗方法
  • 批准号:
    10055849
  • 财政年份:
    2023
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Collaborative R&D
Eco-friendly low shrinkage concrete integrating upcycled textile waste
结合升级回收纺织废料的环保低收缩混凝土
  • 批准号:
    DE230101221
  • 财政年份:
    2023
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Early Career Researcher Award
Modeling of Shrinkage Behavior of Polymers
聚合物收缩行为的建模
  • 批准号:
    23H01142
  • 财政年份:
    2023
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Penalty, non-penalty shrinkage and ensemble methods for low and high dimensional data
低维和高维数据的惩罚、非惩罚收缩和集成方法
  • 批准号:
    RGPIN-2019-04101
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Grants Program - Individual
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
  • 批准号:
    573853-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
    University Undergraduate Student Research Awards
Adaptive Dependent Data Models via Graph-Informed Shrinkage and Sparsity
通过图通知收缩和稀疏性的自适应相关数据模型
  • 批准号:
    2214726
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Standard Grant
Regulatory mechanism of adipose shrinkage on chronic inflammation
脂肪收缩对慢性炎症的调节机制
  • 批准号:
    22K19433
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Balancing Tourism and Conservation in Era of Climate Change and Shrinkage: Land Use Maps as a Boundary Object
在气候变化和收缩时代平衡旅游和保护:土地利用图作为边界对象
  • 批准号:
    22H03852
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
  • 批准号:
    RGPIN-2017-05228
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了