GeoHazard: Modeling Natural Hazards and Assessing Risks

GeoHazard:自然灾害建模和风险评估

基本信息

  • 批准号:
    1812362
  • 负责人:
  • 金额:
    $ 283.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

As human populations grow and spread into areas where extreme natural events impact lives, there is increasing need for innovative Earth science curriculum materials that help students interpret data and and understand the factors and risks associated with natural hazards. Studying the processes underlying these naturally occurring events and the relationships between humans and their environments would enrich the standard Earth science curriculum by providing students with valuable insights about the potential impacts of extreme natural events. This project will respond to that need by developing and testing a new instructional approach that integrates a data analysis tool with Earth systems models in a suite of online curriculum modules for middle and high school Earth science students. Each module will be designed as a sequence of activities lasting approximately 7-10 class periods. These will be stand-alone modules so each teacher can implement just one module or several modules. The modules will facilitate development of rich conceptual understandings related to the system science of natural hazards and their impacts. Students will develop scientific arguments that include risk assessment based on their understanding of real-world data and the particular Earth system being studied. The project will develop a set of computational models designed specifically to explore geoscience systems responsible for natural hazards. An open-source data analysis tool will also be modified for students to create and analyze visualizations of the magnitude, frequency, and distribution of real-world hazards and the impact of those hazards on people. Students will compare data generated from the Earth systems models with real-world data in order to develop an understanding of the cause and progression of natural hazards, as well as to make predictions and evaluate future risks. The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The four-year, early stage design and development project will be conducted in two phases. In Phase 1, design-based research will be used to iteratively design and test Earth systems models. A team of five lead teachers will field test modules and provide focus group feedback during the development phase of the curricula. These lead teachers will provide input into the design and development of the tools, the organization and structure of the curriculum, and provide suggestions about classroom implementation to support the development of teacher support materials. After the models are developed, four curriculum modules related to hurricanes, earthquakes, floods, and wildfires will be developed, tested, and revised. In Phase 2, a group of 30 teachers will participate in implementation studies that will test usability of the modules across students from diverse backgrounds and feasibility of implementation across a range of classroom settings. Research will focus on understanding how to support student analysis of real-world datasets in order to improve their conceptual understanding of complex Earth systems associated with natural hazards. The project will also examine the role of uncertainty when students make scientific arguments that include predictions about the behaviors of complex systems and the uncertainties related to risk assessment. The project aims to clarify student views of uncertainty and how teachers can better support student understanding of the inherently uncertain nature of systems, models, and natural hazards, while understanding that models can be used to reduce impact. Questions guiding project research include: (1) How do students use flexible data visualizations to make sense of data and build and refine conceptual models about natural hazards? (2) How do students incorporate data from models and the real world in formulating scientific arguments; how do students use scientific uncertainty to assess risks based on their understanding of a natural hazard system; and how do students quantify and explain risks to humans and compare different sources of risks? And (3) Do GeoHazard curriculum modules help students make gains in risk-infused scientific argumentation practice and conceptual understanding underlying natural hazards? To what extent, for whom, and under what conditions is the GeoHazard curriculum useful in developing risk-infused scientific argumentation practice and conceptual understanding?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人口的增长和向极端自然事件影响生活的地区扩散,越来越需要创新的地球科学课程材料,帮助学生解释数据,并了解与自然灾害相关的因素和风险。研究这些自然发生事件背后的过程以及人类与环境之间的关系,将为学生提供有关极端自然事件潜在影响的宝贵见解,从而丰富标准的地球科学课程。该项目将通过开发和测试一种新的教学方法来响应这一需求,该方法将数据分析工具与地球系统模型集成到一套面向初中和高中地球科学学生的在线课程模块中。每个模块将被设计为一系列活动,持续大约7-10课时。这些将是独立的模块,所以每个老师可以只实施一个模块或几个模块。这些模块将有助于发展与自然灾害及其影响的系统科学有关的丰富的概念理解。学生将根据他们对真实世界数据和所研究的特定地球系统的理解,提出包括风险评估在内的科学论证。该项目将开发一套专门用于探索对自然灾害负责的地球科学系统的计算模型。一个开源数据分析工具也将被修改,以供学生创建和分析现实世界危害的大小、频率和分布以及这些危害对人们的影响的可视化。学生们将把地球系统模型生成的数据与现实世界的数据进行比较,以便了解自然灾害的原因和进展,并做出预测和评估未来的风险。探索研究preK-12项目(DRK-12)旨在通过研究和开发创新资源、模型和工具,显著提高preK-12学生和教师对科学、技术、工程和数学(STEM)的学习和教学。DRK-12计划中的项目建立在STEM教育的基础研究和先前的研究和开发工作的基础上,为拟议的项目提供了理论和实证依据。这项为期四年的早期设计和开发项目将分两个阶段进行。在第一阶段,基于设计的研究将用于迭代设计和测试地球系统模型。一个由五名主要教师组成的小组将实地测试模块,并在课程开发阶段提供焦点小组反馈。这些领导教师将为工具的设计和开发、课程的组织和结构提供意见,并就课堂实施提供建议,以支持教师支持材料的开发。模型开发完成后,将开发、测试和修订飓风、地震、洪水和野火相关的四个课程模块。在第二阶段,由30名教师组成的小组将参与实施研究,测试这些模块在不同背景的学生中的可用性,以及在一系列课堂环境中实施的可行性。研究将侧重于了解如何支持学生对现实世界数据集的分析,以提高他们对与自然灾害相关的复杂地球系统的概念理解。该项目还将研究不确定性在学生进行科学论证时的作用,包括对复杂系统行为的预测和与风险评估相关的不确定性。该项目旨在澄清学生对不确定性的看法,以及教师如何更好地支持学生理解系统、模型和自然灾害的内在不确定性,同时理解模型可以用来减少影响。指导项目研究的问题包括:(1)学生如何使用灵活的数据可视化来理解数据,建立和完善关于自然灾害的概念模型?(2)学生如何将来自模型和现实世界的数据纳入科学论证;学生如何根据他们对自然灾害系统的理解,利用科学的不确定性来评估风险;学生如何量化和解释对人类的风险,并比较不同的风险来源?(3)地质灾害课程模块是否有助于学生在风险科学论证实践和对自然灾害的概念理解方面取得进展?在何种程度上,对谁,以及在何种条件下,地质灾害课程对发展充满风险的科学论证实践和概念理解有用?该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Pallant其他文献

From experience to explanation: an analysis of students’ use of a wildfire simulation
Framing Geohazard Learning as Risk Assessment Using a Computer Simulation: A Case of Flooding
  • DOI:
    10.1007/s10956-024-10151-7
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Amy Pallant;Hee-Sun Lee;Trudi Lord;Christopher Lore
  • 通讯作者:
    Christopher Lore
Using multiple, dynamically linked representations to develop representational competency and conceptual understanding of the earthquake cycle
利用多种动态链接的表示法来发展对地震周期的表征能力和概念理解
  • DOI:
    10.1016/j.compedu.2024.105149
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    10.500
  • 作者:
    Christopher Lore;Hee-Sun Lee;Amy Pallant;Jie Chao
  • 通讯作者:
    Jie Chao
Fostering Students' Epistemologies of Models via Authentic Model-Based Tasks

Amy Pallant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Pallant', 18)}}的其他基金

YouthQuake: Engaging urban students in a computational geology experience to forecast earthquake hazards and manage risks for their community
YouthQuake:让城市学生参与计算地质学体验,以预测地震灾害并管理社区风险
  • 批准号:
    2241021
  • 财政年份:
    2023
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Standard Grant
Geological Construction of Rock Arrangements from Tectonics: Systems Modeling Across Scales
从构造学上对岩石排列进行地质构造:跨尺度的系统建模
  • 批准号:
    2006144
  • 财政年份:
    2020
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Continuing Grant
Integrating Transdisciplinary and Computational Approaches in the Earth Science Curriculum Using Data Visualizations, Scientific Argumentation, and Exploration of Geohazards
利用数据可视化、科学论证和地质灾害探索将跨学科和计算方法整合到地球科学课程中
  • 批准号:
    1841928
  • 财政年份:
    2018
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Continuing Grant
Geological models for Explorations of Dynamic Earth (GEODE): Integrating the power of geodynamic models in middle school Earth Science curriculum
动态地球探索地质模型(GEODE):将地球动力学模型的力量融入中学地球科学课程
  • 批准号:
    1621176
  • 财政年份:
    2016
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Continuing Grant
High Adventure Science: Earths Systems and Sustainability
高探险科学:地球系统和可持续性
  • 批准号:
    1220756
  • 财政年份:
    2012
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Continuing Grant
High Adventure Science
高冒险科学
  • 批准号:
    0929774
  • 财政年份:
    2009
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Modeling the Conceptual Dynamics of College Students' Reasoning about Natural Selection
大学生自然选择推理的概念动态建模
  • 批准号:
    2300437
  • 财政年份:
    2023
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Standard Grant
Probing and modeling decidual natural killer cells in preterm birth
早产中蜕膜自然杀伤细胞的探测和建模
  • 批准号:
    10607933
  • 财政年份:
    2022
  • 资助金额:
    $ 283.05万
  • 项目类别:
Collaborative Research: Integrated Numerical Modeling and Field Observations of Hurricane Impacts to Natural and Hybrid Infrastructure
合作研究:飓风对自然和混合基础设施影响的综合数值模拟和现场观测
  • 批准号:
    2139883
  • 财政年份:
    2022
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Standard Grant
Modeling based design of chimeric antigen receptors for Natural Killer cell-based immunotherapy
用于基于自然杀伤细胞的免疫治疗的嵌合抗原受体的基于建模的设计
  • 批准号:
    10701754
  • 财政年份:
    2022
  • 资助金额:
    $ 283.05万
  • 项目类别:
Collaborative Research: Integrated Numerical Modeling and Field Observations of Hurricane Impacts to Natural and Hybrid Infrastructure
合作研究:飓风对自然和混合基础设施影响的综合数值模拟和现场观测
  • 批准号:
    2139882
  • 财政年份:
    2022
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Standard Grant
Modeling Temporality with Natural Language Processing to Predict Readmission Risk of Patients with Psychosis
使用自然语言处理对时序进行建模以预测精神病患者的再入院风险
  • 批准号:
    10445583
  • 财政年份:
    2022
  • 资助金额:
    $ 283.05万
  • 项目类别:
Investigating the eco-hydro-geomorphic functioning of natural salt marshes - A combined field and numerical modeling approach
研究天然盐沼的生态水文地貌功能——现场与数值模拟相结合的方法
  • 批准号:
    569990-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
SAI-P: Overcoming Barriers to User-Centered Infrastructure Planning with System Modeling and Natural Language Processing
SAI-P:通过系统建模和自然语言处理克服以用户为中心的基础设施规划的障碍
  • 批准号:
    2228783
  • 财政年份:
    2022
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Standard Grant
Integration of microbial, stable isotope, and modeling tools to identify natural and enhanced pollutant bioattenuation processes at complex contaminated sites
整合微生物、稳定同位素和建模工具,以识别复杂污染场地的自然和增强的污染物生物衰减过程
  • 批准号:
    575243-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 283.05万
  • 项目类别:
    Alliance Grants
Modeling Temporality with Natural Language Processing to Predict Readmission Risk of Patients with Psychosis
使用自然语言处理对时序进行建模以预测精神病患者的再入院风险
  • 批准号:
    10669207
  • 财政年份:
    2022
  • 资助金额:
    $ 283.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了