Experimental investigation and further development of the cavitation erosion scale effects and the cavitation erosion model

空蚀尺度效应和空蚀模型的实验研究和进一步发展

基本信息

项目摘要

Hydrodynamic cavitation and the resulting cavitation erosion remain serious and hardly predictable problems. The empirically deduced design guidelines are used to avoid cavitation in hydro power facilities. However these guidelines depend on the design discharge. Thus the climate change and the resulting increase in flood discharges pose severe threats to the facility safety. Therefore the present research project seeks to clarify the basic mechanism of hydrodynamic cavitation erosion and to make damage predictable. Former research campaigns already have empirically elucidated the cavitation erosion scale effects, especially concerning civil engineering materials. However the applicability remains unclear due to a lack of knowledge of the actual damage mechanism. The microscopic damage process which was found in single bubble experiments could not yet be transferred to bubble ensembles in hydrodynamic cavitation. A new, promising cavitation erosion model postulates a relation between the cavitation cloud behaviour and the erosion. The coherent collapse of a cavitation cloud induces a micro jet in a boundary near bubble. The present project investigates the dynamics and scale effects of the cavitation cloud by time resolved optical observation to clarify correlations to the erosion. The actual damage process of hydrodynamic cavitation will be observed with a time resolved, microscopic method. Amplitude, frequency of micro jets and its temporal and special correlation cloud behaviour and damage patterns are analysed. The research will yield basic knowledge about the actual damage mechanism and the fundamentals and transferability of scale effects. It will verify the current cavitation erosion model.
水力空化和由此产生的气蚀仍然是严重的和难以预测的问题。经验推导的设计准则,用于避免在水力发电设施的空化。然而,这些指导方针取决于设计流量。因此,气候变化和由此导致的洪水排放量的增加对设施安全构成严重威胁。因此,本研究旨在阐明水力空蚀的基本机理,并使损害可预测。以往的研究活动已经从经验上阐明了空蚀的尺度效应,特别是关于土木工程材料。然而,由于缺乏对实际损坏机制的了解,其适用性仍不清楚。单气泡实验中发现的微观损伤过程还不能转移到水力空化中的气泡群中。一个新的,有前途的空蚀模型假设空蚀云的行为和侵蚀之间的关系。空泡云的相干溃灭在空泡附近的边界处产生微射流。本计画借由时间分辨光学观测来研究空泡云的动力学与尺度效应,以厘清空泡云与冲蚀的相关性。用时间分辨的微观方法观察水力空化的实际破坏过程。分析了微射流的幅值、频率及其时间和空间相关性、云行为和损伤模式。研究结果将有助于对实际的损伤机理、尺度效应的基本原理和可传递性等问题有一个基本的认识。对现有的空蚀模型进行了验证。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cavitation erosion - scale effect and model investigations
空蚀 - 规模效应和模型研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Peter Rutschmann其他文献

Professor Dr.-Ing. Peter Rutschmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Peter Rutschmann', 18)}}的其他基金

Surrogate bedload transport measurements with acoustic sensors
使用声学传感器进行替代床土输送测量
  • 批准号:
    354201171
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
  • 批准号:
    RGPIN-2017-04508
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
  • 批准号:
    RGPIN-2017-04508
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
AF: SMALL: Further Investigation of the Sum of Squares Hierarchy
AF:小:平方和层次结构的进一步研究
  • 批准号:
    2008920
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
  • 批准号:
    RGPIN-2017-04508
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
  • 批准号:
    507962-2017
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
  • 批准号:
    RGPIN-2017-04508
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Further investigation of congener profiles of Lallemand yeast strains
拉勒曼德酵母菌株同系物谱的进一步研究
  • 批准号:
    506165-2016
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Applied Research and Development Grants - Level 2
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
  • 批准号:
    507962-2017
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
  • 批准号:
    RGPIN-2017-04508
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Further investigation of congener profiles of Lallemand yeast strains
拉勒曼德酵母菌株同系物谱的进一步研究
  • 批准号:
    506165-2016
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Applied Research and Development Grants - Level 2
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了