Mechanisms and Functions of Intermittent Synchronization in Neural and Other Living Systems
神经和其他生命系统间歇同步的机制和功能
基本信息
- 批准号:1813819
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Living nature is cyclic: The heart contracts and expands, sleep and wakefulness replace each other, populations of wild animals increase and decrease, and neural cells in our brains exchange oscillatory electrical signals as we think and move. Whenever biological oscillators interact, they mutually adjust their rhythms, that is, they synchronize. This synchronization needs to be fine-tuned. For example, too much of synchronization between neural cells is associated with motor symptoms of Parkinson's disease, too little is associated with impaired cognition. This research project will investigate the mechanisms of how biological oscillators go in and out of synch in time, an important problem that has not been extensively studied. Biological systems are very adaptable to the changes in the environment, and this research will explore associations between adaptability and dynamics of synchrony. The study will utilize mathematical and computational models of neural and other biological oscillators, complemented by the analysis of available experimental data. The project aims to clarify the mechanisms of synchronization in neural and other living systems. Importantly, this will not only assist in understanding of healthy normal functioning of biological oscillators, but will also advance understanding of mechanisms of pathologies -- much-needed knowledge for the treatments of several brain disorders (e.g., Parkinson's disease, addiction, and schizophrenia) and other pathological conditions. In addition, young scholars will be engaged in this research and will get critical experience in biomathematics, contributing to the preparation of a modern workforce able to tackle life sciences questions with mathematical techniques.In more technical terms, oscillations and synchrony are recognized as important mechanisms underlying many physiological phenomena, in particular neural ones. Excessively strong or weak synchrony is associated with several neurological and neuropsychiatric dysfunctions. Neural synchrony frequently varies in time. Few long-desynchronized dynamics intervals may be functionally different from many short desynchronizations, although the average synchrony may be the same. Recent studies of different neural systems reported the strong prevalence of short desynchronizations. This research will explore the nature and function of these short desynchronizations in neural systems and analyze temporal patterning of synchrony in other living systems. Several questions will be answered: What are the mechanisms of short desynchronizations in neural systems? What function do they serve? What changes in the patterning of synchrony may lead to what dysfunctions? What are the differences in the temporal patterning of synchrony in neural and non-neural living systems? Mathematical techniques will explain how the patterning of synchrony contributes to the adaptability and efficiency of living systems. From a mathematical standpoint, the project will advance understanding of how some experimentally-relevant universal dynamics may emerge in a class of moderately-coupled neural-like oscillators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生命的自然是循环的:心脏收缩和扩张,睡眠和清醒相互替换,野生动物的数量增加和减少,我们大脑中的神经细胞在我们思考和移动时交换振荡的电信号。每当生物振荡器相互作用时,它们就相互调整自己的节奏,也就是说,它们是同步的。需要对这种同步进行微调。例如,神经细胞间过多的同步与帕金森病的运动症状有关,而过少的同步与认知受损有关。这个研究项目将研究生物振荡器如何在时间上进入和不同步的机制,这是一个尚未被广泛研究的重要问题。生物系统对环境的变化具有很强的适应性,本研究将探讨适应性与同步动力学之间的关系。这项研究将利用神经和其他生物振荡器的数学和计算模型,并辅以对现有实验数据的分析。该项目旨在阐明神经系统和其他生命系统的同步机制。重要的是,这不仅有助于理解生物振荡器的健康正常功能,而且还将促进对病理机制的理解——这是治疗几种脑部疾病(如帕金森病、成瘾和精神分裂症)和其他病理状况所急需的知识。此外,年轻学者将参与这项研究,并将获得生物数学方面的重要经验,为培养能够用数学技术解决生命科学问题的现代劳动力做出贡献。在更专业的术语中,振荡和同步被认为是许多生理现象,特别是神经现象的重要机制。同步性过强或过弱与几种神经和神经精神功能障碍有关。神经同步性经常随时间变化。虽然平均同步可能是相同的,但很少有长时间去同步的动态间隔在功能上与许多短时间去同步不同。最近对不同神经系统的研究报告了短时间不同步的普遍存在。本研究将探索神经系统中这些短暂的非同步的本质和功能,并分析其他生命系统中同步的时间模式。几个问题将被回答:神经系统的短时间去同步的机制是什么?它们的作用是什么?同步模式的哪些变化可能导致哪些功能障碍?在神经和非神经生命系统中同步的时间模式有什么不同?数学技术将解释同步模式如何促进生命系统的适应性和效率。从数学的角度来看,该项目将促进对一些实验相关的普遍动力学如何在一类中等耦合的神经样振荡器中出现的理解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spike-Timing Dependent Plasticity Effect on the Temporal Patterning of Neural Synchronization
尖峰时间依赖性可塑性对神经同步时间模式的影响
- DOI:10.3389/fncom.2020.00052
- 发表时间:2020
- 期刊:
- 影响因子:3.2
- 作者:Zirkle, Joel;Rubchinsky, Leonid L.
- 通讯作者:Rubchinsky, Leonid L.
Temporal patterns of synchrony in a pyramidal-interneuron gamma (PING) network
锥体-中间神经元伽马 (PING) 网络中同步的时间模式
- DOI:10.1063/5.0042451
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nguyen, Quynh-Anh;Rubchinsky, Leonid L.
- 通讯作者:Rubchinsky, Leonid L.
Noise effect on the temporal patterns of neural synchrony
噪声对神经同步时间模式的影响
- DOI:10.1016/j.neunet.2021.03.032
- 发表时间:2021
- 期刊:
- 影响因子:7.8
- 作者:Zirkle, Joel;Rubchinsky, Leonid L.
- 通讯作者:Rubchinsky, Leonid L.
Dysregulation of temporal dynamics of synchronous neural activity in adolescents on autism spectrum
自闭症谱系青少年同步神经活动的时间动态失调
- DOI:10.1002/aur.2219
- 发表时间:2019
- 期刊:
- 影响因子:4.7
- 作者:Malaia, Evie A.;Ahn, Sungwoo;Rubchinsky, Leonid L.
- 通讯作者:Rubchinsky, Leonid L.
Using Mathematics to Become in Sync With the Brain
利用数学与大脑同步
- DOI:10.3389/frym.2022.741510
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Swartz, Micah;Rubchinsky, Leonid L.
- 通讯作者:Rubchinsky, Leonid L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Rubchinsky其他文献
Leonid Rubchinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
$ 40万 - 项目类别:
Studentship
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
- 批准号:
2305691 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship Award
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
- 批准号:
BB/Y512527/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Training Grant
Norway. Neuropeptide origins; study of neuropeptide functions in choanoflagellates
挪威。
- 批准号:
BB/X018512/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
- 批准号:
MR/X023303/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
- 批准号:
2894877 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Studentship
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
- 批准号:
2340722 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
- 批准号:
2416250 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




