The physical and functional interplay between telomere and repair proteins: mechanistic and evolutionary insights from an unconventional model
端粒和修复蛋白之间的物理和功能相互作用:来自非常规模型的机械和进化见解
基本信息
- 批准号:1817331
- 负责人:
- 金额:$ 79.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The physical and functional interplay between telomere and repair proteins: mechanistic and evolutionary insights from an unconventional modelThe genetic information that the cell uses to encode normal functions resides on thread-like molecules called chromosomes. The tips of these chromosomes, named telomeres, play especially important roles in protecting the integrity of the genetic information. Telomeres can be likened to aglets, the metal or plastic caps at the tips of shoelaces; when the aglets are missing, the shoelaces (chromosomes) become frayed and fall apart. Paradoxically, the DNA at telomeres is difficult to maintain during the process of chromosome duplication, which occurs each time a cell divides. Many protein molecules, working together are required to ensure the proper maintenance of telomere DNA. This research will utilize a variety of techniques to investigate how these protein molecules work together, how they interact with one another, and how these interactions are regulated to promote telomere integrity. The study will be carried out using a fungus called Ustilago maydis, which is easy to manipulate and has telomere features that are shared by many animals. This research will also train many undergraduate students and a postdoctoral student, allowing them to acquire the technical and critical thinking skills necessary for future careers in science. The undergraduates will be recruited from Hostos Community College, an institution that serves primarily under-represented minority students. Training these students will benefit society by promoting a more diverse scientific workforce.Telomeres are specialized nucleoprotein structures that protect and stabilize the ends of chromosomes. Telomere DNA is maintained through periodic addition of a repetitive sequence by a special reverse transcriptase named telomerase. A key function of the telomere nucleoprotein complex is to allow the cells to distinguish normal chromosome ends from double strand breaks by suppressing inappropriate DNA repair. However, repair proteins paradoxically help to promote telomere maintenance in two circumstances. First, telomerase-negative cells can utilize an aberrant recombination/repair mechanism (called ALT) to add telomere repeat tracts onto chromosome ends. Second, in telomerase-positive cells, multiple recombination repair factors promote the maintenance of telomere tracts by enhancing telomere replication (e.g., by stabilizing stalled forks or surmounting replication barriers). We showed recently that both of these functions of repair proteins at telomeres can be faithfully reproduced in Ustilago maydis, a model fungal system for studying fundamental cellular processes. Moreover, we discovered in U. maydis several conserved and functionally significant interactions between telomere proteins and repair factors. Consequently, we are poised to address how the direct physical interactions between telomere and repair proteins channel the enzymatic activity of repair factors to promote telomere maintenance while suppressing aberrant repair. This is a level of regulation that has not received detailed examinations. We have also uncovered in U. maydis two duplex telomere binding proteins with distinct functions and interactions with repair proteins. We will therefore examine how the telomere and repair proteins co-evolve through comparative analysis of these factors in different fungi.Objectives and Methods:1) Use binding and activity assays to define the molecular basis of telomere-repair protein interactions and examine how the interactions affect the repair activities of these proteins in vitro.2) Use genetic and cell-based assays to determine the mechanisms and function of the telomere-repair protein interactions in promoting telomere replication and ALT in vivo.3) Characterize the properties of duplex telomere-binding protein homologs in budding yeast and Ustilago to determine the evolutionary path of duplex telomere-binding proteins and their interaction with repair factors in fungi.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
端粒和修复蛋白之间的物理和功能相互作用:来自一个非常规模型的机械和进化的见解细胞用来编码正常功能的遗传信息存在于被称为染色体的线状分子上。这些染色体的尖端,被称为端粒,在保护遗传信息的完整性方面起着特别重要的作用。端粒可以被比作鞋带末端的金属或塑料帽;当肩带丢失时,鞋带(染色体)就会磨损并脱落。矛盾的是,在每次细胞分裂时发生的染色体复制过程中,端粒上的DNA很难维持。许多蛋白质分子协同工作,以确保端粒DNA的适当维护。这项研究将利用各种技术来研究这些蛋白质分子如何协同工作,它们如何相互作用,以及如何调节这些相互作用以促进端粒完整性。这项研究将使用一种名为Ustilago maydis的真菌进行,这种真菌易于操作,并且具有许多动物共有的端粒特征。这项研究还将培养许多本科生和一名博士后,使他们获得未来科学事业所需的技术和批判性思维技能。这些本科生将从霍斯托斯社区学院(Hostos Community College)招募,该学院主要招收少数族裔学生。培训这些学生将通过促进更多样化的科学劳动力来造福社会。端粒是保护和稳定染色体末端的特殊核蛋白结构。端粒DNA是通过一种叫做端粒酶的特殊逆转录酶周期性地添加一个重复序列来维持的。端粒核蛋白复合物的一个关键功能是通过抑制不适当的DNA修复,使细胞能够区分正常染色体末端和双链断裂。然而,在两种情况下,修复蛋白矛盾地帮助促进端粒的维持。首先,端粒酶阴性细胞可以利用异常重组/修复机制(称为ALT)将端粒重复束添加到染色体末端。其次,在端粒酶阳性细胞中,多种重组修复因子通过增强端粒复制(例如,通过稳定停滞的分叉或克服复制障碍)来促进端粒束的维持。我们最近表明,端粒修复蛋白的这两种功能都可以在黑穗病菌(Ustilago maydis)中忠实地复制,黑穗病菌是研究基本细胞过程的模型真菌系统。此外,我们在美国maydis中发现了端粒蛋白和修复因子之间的一些保守的和功能显著的相互作用。因此,我们准备解决端粒和修复蛋白之间的直接物理相互作用如何引导修复因子的酶活性,以促进端粒维护,同时抑制异常修复。这是一个尚未接受详细审查的监管水平。我们还发现了两种具有不同功能和与修复蛋白相互作用的双端粒结合蛋白。因此,我们将通过对不同真菌中这些因素的比较分析来研究端粒和修复蛋白如何共同进化。目的和方法:1)利用结合和活性实验确定端粒-修复蛋白相互作用的分子基础,并研究这些相互作用如何影响这些蛋白的体外修复活性。2)利用遗传学和基于细胞的方法确定端粒-修复蛋白相互作用在体内促进端粒复制和ALT的机制和功能。3)研究出芽酵母和黑穗菌双端粒结合蛋白同源物的特性,确定双端粒结合蛋白在真菌中的进化路径及其与修复因子的相互作用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neal Lue其他文献
Neal Lue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neal Lue', 18)}}的其他基金
Multifaceted regulation of the DNA repair machinery and suppression of aberrant transcription by telomere proteins
DNA 修复机制的多方面调控和端粒蛋白异常转录的抑制
- 批准号:
2246561 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别:
Standard Grant
Mechanisms and Evolution of the Telomere Protective Complex Cdc13-Stn1-Ten1
端粒保护复合物 Cdc13-Stn1-Ten1 的机制和进化
- 批准号:
1157305 - 财政年份:2012
- 资助金额:
$ 79.6万 - 项目类别:
Continuing Grant
相似国自然基金
Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
- 批准号:82371801
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
利用CRISPR内源性激活Atoh1转录促进前庭毛细胞再生和功能重建
- 批准号:82371145
- 批准年份:2023
- 资助金额:46.00 万元
- 项目类别:面上项目
SMC5-NSMCE2功能异常激活APSCs中p53/p16衰老通路导致脂肪萎缩和胰岛素抵抗的机制研究
- 批准号:82371873
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
- 批准号:82371373
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
HK2乳酰化修饰介导巨噬细胞功能障碍在脓毒症中的作用及机制
- 批准号:82372160
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
LTB4/BLT1轴调控NLRP3炎症小体对糖尿病认知功能障碍的作用研究
- 批准号:82371213
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
- 批准号:82372328
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
浸润特性调制的统计热力学研究
- 批准号:21173271
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Modulating the immuno-metabolic interplay in liver cancer with cryoablation
通过冷冻消融调节肝癌的免疫代谢相互作用
- 批准号:
10647494 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别:
The Intimate Interplay Between Keratoconus, Sex Hormones, and the Anterior Pituitary
圆锥角膜、性激素和垂体前叶之间的密切相互作用
- 批准号:
10746247 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别:
Primary cilia loss in bile duct cells- the interplay with the autophagy machinery
胆管细胞中初级纤毛的损失——与自噬机制的相互作用
- 批准号:
10605658 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别:
The Interplay of Host Genetic Variation and the Gut Microbiome in Crohn's Disease
克罗恩病宿主遗传变异与肠道微生物组的相互作用
- 批准号:
10751276 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别:
The interplay between active and passive mechanics in the aging bladder
老化膀胱中主动和被动力学之间的相互作用
- 批准号:
10827248 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别:
Pathogenic reciprocal interplay between cyst epithelium and myofibroblasts in polycystic kidney disease
多囊肾病中囊肿上皮和肌成纤维细胞之间的致病相互作用
- 批准号:
10608350 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别:
Primary cilia loss in bile duct cells- the interplay with the autophagy machinery
胆管细胞初级纤毛损失——与自噬机制的相互作用
- 批准号:
10898187 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别:
Investigating the interplay between hallmarks of aging; protein glycation, nutrient sensing, and senescence
研究衰老特征之间的相互作用;
- 批准号:
10901045 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别:
Functional Architecture and Interplay of Transcription Regulatory Elements of the Human Genome
人类基因组转录调控元件的功能结构和相互作用
- 批准号:
10639574 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别:
Determining the interplay of MAIT cells and the translocated microbiome in HIV-induced neuroinflammation
确定 MAIT 细胞和易位微生物组在 HIV 诱导的神经炎症中的相互作用
- 批准号:
10744475 - 财政年份:2023
- 资助金额:
$ 79.6万 - 项目类别: