Numerical Spectral Study of Elliptic Operators

椭圆算子的数值谱研究

基本信息

  • 批准号:
    1818948
  • 负责人:
  • 金额:
    $ 8.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Since Lord Rayleigh conjectured more than a century ago that the disk should minimize the first Laplace-Dirichlet eigenvalue among all shapes of equal area, spectral study of elliptic operators has been an active research topic with applications including mechanical vibration, optical resonators, photonic crystals, and population dynamics. In mechanical vibration, for example, it is interesting to explore what shapes or what density distributions can generate minimal fundamental frequency; in photonic crystals, one seeks to design semiconductor structures with a periodic variation of refractive index to maximize photonic bandgap in which the propagation of light is forbidden. This project aims to advance numerical approaches to these kinds of questions for classes of eigenvalue problems that arise in design of containers to minimize fluid sloshing and in vibration control. Researchers have turned their attention to these questions with a renewed interest due to surprising recent discoveries, which include symmetry structure found in the optimizer of Steklov eigenvalue problems, optimal density arrangements in thin plates, and localization of vibration induced by interior clamped points. The project will explore a range of related open questions and aims to develop numerical approaches to solve them. The project also provides opportunities for mentoring students and engaging interested scientists, including those from underrepresented groups. Results are expected to have important potential application in systems that reduce liquid sloshing in missiles and other vessels, in noise and vibration control, and in medical and geophysical imaging. This project aims to develop numerical approaches to solve Steklov and biharmonic eigenvalue problems and study their related shape and topology optimization problems. The forward solvers for this project are based on boundary integral methods, finite element methods, and spectral methods. The optimization solvers are based on shape/topology derivatives and rearrangement methods. The investigator will study a wide range of problems arising from applications in liquid sloshing and plate vibrations, including (1) computation of the k-th Steklov eigenvalue problem and its optimization among star-shaped domains in three dimensions, (2) computation of principal eigenvalue of mixed Steklov eigenvalue problems and its related shape optimization, (3) Steklov eigenvalue problems on general manifolds, (4) spectral study of buckled plate eigenvalue problems, (5) localization of eigenfunctions induced by clamped points, and (6) multiphase shape optimization problems involving biharmonic operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自从一个多世纪前Rayleigh勋爵猜想圆盘应该在所有等面积形状中最小化第一Laplace-Dirichlet本征值以来,椭圆算符的谱研究一直是一个活跃的研究课题,其应用领域包括机械振动、光学谐振、光子晶体和布居动力学。例如,在机械振动中,探索什么形状或什么密度分布可以产生最小的基频是很有趣的;在光子晶体中,人们试图设计具有周期性折射率变化的半导体结构,以最大化禁止光传播的光子带隙。这个项目的目的是推进这类在容器设计中出现的特征值问题的数值方法,以最大限度地减少液体晃动和振动控制。由于最近令人惊讶的发现,研究人员以新的兴趣将注意力转向这些问题,其中包括在Steklov特征值问题的优化器中发现的对称结构,薄板中的最优密度排列,以及由内部夹点引起的振动的局部化。该项目将探索一系列相关的开放问题,并旨在开发数字方法来解决这些问题。该项目还为指导学生和吸引感兴趣的科学家,包括那些来自代表性不足的群体的科学家提供了机会。这些结果有望在减少导弹和其他容器中液体晃动的系统、噪音和振动控制以及医学和地球物理成像方面具有重要的潜在应用。本项目旨在开发数值方法来求解Steklov和双调和特征值问题,并研究它们相关的形状和拓扑优化问题。该项目的正解方法基于边界积分法、有限元方法和谱方法。优化求解器基于形状/拓扑导数和重排方法。研究人员将研究在液体晃动和板振动应用中产生的广泛问题,包括(1)三维星形区域中第k次Steklov特征值问题的计算及其优化,(2)混合Steklov特征值问题的主特征值的计算及其形状优化,(3)一般流形上的Steklov特征值问题,(4)屈曲板本征值问题的谱研究,(5)由夹点引起的特征函数的局部化,以及(6)涉及双调和算子的多相形状优化问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extremal Rearrangement Problems Involving Poisson’s Equation with Robin Boundary Conditions
  • DOI:
    10.1007/s10915-021-01413-2
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    C. Kao;S. Mohammadi
  • 通讯作者:
    C. Kao;S. Mohammadi
Computation of free boundary minimal surfaces via extremal Steklov eigenvalue problems
Optimal Chemotherapy for Brain Tumor Growth in a Reaction-Diffusion Model
反应扩散模型中脑肿瘤生长的最佳化疗
  • DOI:
    10.1137/20m135995x
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Yousefnezhad, Mohsen;Kao, Chiu-Yen;Mohammadi, Seyyed Abbas
  • 通讯作者:
    Mohammadi, Seyyed Abbas
Tuning the total displacement of membranes
Linear Convergence of a Rearrangement Method for the One-dimensional Poisson Equation
一维泊松方程重排方法的线性收敛
  • DOI:
    10.1007/s10915-020-01389-5
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Kao, Chiu-Yen;Mohammadi, Seyyed Abbas;Osting, Braxton
  • 通讯作者:
    Osting, Braxton
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chiu-Yen Kao其他文献

A semi-definite optimization method for maximizing the shared band gap of topological photonic crystals
  • DOI:
    10.1016/j.jcp.2024.113538
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Chiu-Yen Kao;Junshan Lin;Braxton Osting
  • 通讯作者:
    Braxton Osting
Erratum to: Lax–Friedrichs Multigrid Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws
  • DOI:
    10.1007/s10915-015-0025-4
  • 发表时间:
    2015-04-12
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Weitao Chen;Ching-Shan Chou;Chiu-Yen Kao
  • 通讯作者:
    Chiu-Yen Kao

Chiu-Yen Kao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chiu-Yen Kao', 18)}}的其他基金

RUI: Geometric Optimization Involving Partial Differential Equations
RUI:涉及偏微分方程的几何优化
  • 批准号:
    2208373
  • 财政年份:
    2022
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
Closest Point Methods for Eigenvalue Problems from Inhomogeneous Structures
非齐次结构特征值问题的最近点法
  • 批准号:
    1318364
  • 财政年份:
    2013
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
Closest Point Methods for Eigenvalue Problems from Inhomogeneous Structures
非齐次结构特征值问题的最近点法
  • 批准号:
    1216742
  • 财政年份:
    2012
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
Shape and Topology Optimization on Elliptic Eigenvalue Problems in Inhomogeneous Media
非均匀介质中椭圆特征值问题的形状和拓扑优化
  • 批准号:
    0811003
  • 财政年份:
    2008
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant

相似国自然基金

一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
  • 批准号:
    LTGY23H220001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于spectral集和spectral拓扑若干问题研究
  • 批准号:
    11661057
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
  • 批准号:
    11473055
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

Study of real-time dual-comb spectroscopy in versatile spectral region based on on-chip devices
基于片上器件的通用光谱区实时双梳光谱研究
  • 批准号:
    22KF0143
  • 财政年份:
    2023
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study of spectral reflectance curves of color materials having function of suppressing the color shift under LED light.
LED光下具有抑制色移功能的色材光谱反射率曲线研究。
  • 批准号:
    21K02125
  • 财政年份:
    2021
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comprehensive study toward standardization of low dose CT protocols for patients with renal dysfunction using dual-layer spectral detector CT
使用双层能谱探测器CT对肾功能不全患者低剂量CT方案标准化进行综合研究
  • 批准号:
    19K17274
  • 财政年份:
    2019
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on defect detection by spatial spectral entropy (SSE) and healthy part evaluation for noncontact acoustic inspection
非接触声学检测中空间谱熵(SSE)缺陷检测和健康部位评估研究
  • 批准号:
    19K04414
  • 财政年份:
    2019
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of weak limit theorem with spectral scattering theory
用谱散射理论研究弱极限定理
  • 批准号:
    18K03327
  • 财政年份:
    2018
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the spectral energy distributions and variability of a large X-ray selected sample of AGN
研究活动星系核大型 X 射线选定样本的光谱能量分布和变异性
  • 批准号:
    2114198
  • 财政年份:
    2018
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Studentship
Study of gas dynamics of the intra-cluster medium with high spectral energy resolution
高光谱能量分辨率簇内介质气体动力学研究
  • 批准号:
    17K05393
  • 财政年份:
    2017
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on the Relationship between Foreign Exchange Rates and Macroeconomy with Band Spectral Regression
外汇汇率与宏观经济关系的谱回归研究
  • 批准号:
    17K03709
  • 财政年份:
    2017
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental study of heat-resistant and photoluminescent polymers exhibiting extremely large Stokes shift for spectral conversion
具有极大斯托克斯位移光谱转换的耐热光致发光聚合物的实验研究
  • 批准号:
    17H03112
  • 财政年份:
    2017
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study of the supernova nucleosynthesis of phosphorus with near-infrared spectral mapping of supernova remnants
用超新星遗迹的近红外光谱图研究磷的超新星核合成
  • 批准号:
    17H06739
  • 财政年份:
    2017
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了