Developing Efficient and Accessible Computational Tools for Poroelasticity Problems
开发有效且易于使用的计算工具来解决孔隙弹性问题
基本信息
- 批准号:1819252
- 负责人:
- 金额:$ 14.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Poroelasticity problems arise from a broad range of real world problems, in which fluid flows through a porous medium that can deform due to the fluid pressure. For example, convection-enhanced drug delivery to tumor sites, functioning of knee meniscus, and CO2 sequestration all involve this type of interaction between solid (displacement) and fluid (pressure). Mathematical modeling and computer simulations will provide valuable tools to enhance our ability in understanding, predicting, and controlling these complicated physical processes. This research project aims at developing a family of novel accurate, efficient, and robust numerical methods for poroelasticity problems. The focus of this project is on design, analysis, implementation, and applications of a family of novel finite element methods for poroelasticity problems. Based on the displacement-pressure two-field formulation, weak Galerkin finite element methods will be developed for approximating both solid displacement and fluid pressure. Conditions for stable coupling of these sub-problem solvers will be investigated. The new methods will be applied to an engineering problem on knee meniscus. These new methods will also be implemented as Matlab and C++ code modules (on deal.II platform) that are openly accessible to the scientific computing community. The efficient and robust computational tools developed in this project can be applied to many real world problems that involve poroelasticity such as drug delivery to tumor sites, food processing, reservoir engineering, and tissue engineering. These will have further economic impact on better use of natural resources or cures for diseases. The methodology developed in this project can be applied to a large class of scientific computing tasks that deal with multiple physical processes. This project will also provide hands-on training opportunities for both graduate and undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多孔弹性问题源于广泛的真实的世界问题,其中流体流过多孔介质,该多孔介质可以由于流体压力而变形。 例如,对流增强的药物输送到肿瘤部位,膝关节半月板的功能和CO2隔离都涉及固体(位移)和流体(压力)之间的这种相互作用。 数学建模和计算机模拟将提供有价值的工具,以提高我们理解,预测和控制这些复杂的物理过程的能力。 本研究计划旨在发展一系列精确、有效且稳健的数值方法来求解孔隙弹性问题。 这个项目的重点是设计,分析,实施和应用的一个家庭的新的有限元方法的孔隙弹性问题。 基于位移-压力双场公式,弱伽辽金有限元方法将被开发用于同时近似固体位移和流体压力。 这些子问题求解器的稳定耦合的条件将被调查。 新方法将应用于膝关节半月板的工程问题。这些新方法也将被实现为Matlab和C++代码模块(在deal.II平台上),科学计算社区可以公开访问。在这个项目中开发的高效和强大的计算工具可以应用于许多真实的世界的问题,涉及多孔弹性,如药物输送到肿瘤部位,食品加工,水库工程和组织工程。 这些将对更好地利用自然资源或治疗疾病产生进一步的经济影响。 在这个项目中开发的方法可以应用于一个大类的科学计算任务,处理多个物理过程。 该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Poroelasticity Modules in DarcyLite
- DOI:10.1007/978-3-030-77980-1_15
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jiangguo Liu;Zhuoran Wang
- 通讯作者:Jiangguo Liu;Zhuoran Wang
deal.II implementation of a weak Galerkin finite element solver for Darcy flow
deal.II 达西流弱伽辽金有限元求解器的实现
- DOI:10.1007/978-3-030-22747-0_37
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Wang, Zhuoran;Harper, Graham;O'Leary, Patrick;Liu, Jiangguo;Tavener, Simon
- 通讯作者:Tavener, Simon
Analysis of a 2-field finite element solver for poroelasticity on quadrilateral meshes
- DOI:10.1016/j.cam.2021.113539
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Zhuoran Wang;S. Tavener;Jiangguo Liu
- 通讯作者:Zhuoran Wang;S. Tavener;Jiangguo Liu
A lowest-order weak Galerkin finite element method for Stokes flow on polygonal meshes
- DOI:10.1016/j.cam.2019.112479
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Jiangguo Liu;Graham Harper;Nolisa S. Malluwawadu;S. Tavener
- 通讯作者:Jiangguo Liu;Graham Harper;Nolisa S. Malluwawadu;S. Tavener
Penalty-Free Any-Order Weak Galerkin FEMs for Elliptic Problems on Quadrilateral Meshes
- DOI:10.1007/s10915-020-01239-4
- 发表时间:2020-06
- 期刊:
- 影响因子:2.5
- 作者:Jiangguo Liu;S. Tavener;Zhuoran Wang
- 通讯作者:Jiangguo Liu;S. Tavener;Zhuoran Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiangguo Liu其他文献
An efficient algorithm for characteristic tracking on two-dimensional triangular meshes
二维三角网格特征跟踪的高效算法
- DOI:
10.1007/s00607-007-0223-5 - 发表时间:
2007 - 期刊:
- 影响因子:3.7
- 作者:
Jiangguo Liu;Hongsen Chen;R. Ewing;Guan Qin - 通讯作者:
Guan Qin
L2 error estimation for DGFEM for elliptic problems with low regularity
针对低规律性椭圆问题的 DGFEM L2 误差估计
- DOI:
10.1016/j.aml.2012.01.022 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jiangguo Liu;Lin Mu;X. Ye - 通讯作者:
X. Ye
A NOTE ON THE APPROXIMATION PROPERTIES OF THE LOCALLY DIVERGENCE-FREE FINITE ELEMENTS
局部无散度有限元近似性质的注解
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jiangguo Liu - 通讯作者:
Jiangguo Liu
Convergence Analysis of Wavelet Schemes for Convection-Reaction Equations under Minimal Regularity Assumptions
最小正则假设下对流反应方程小波格式的收敛性分析
- DOI:
10.1137/s0036142903433832 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Jiangguo Liu;B. Popov;Hong Wang;R. Ewing - 通讯作者:
R. Ewing
A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements
基于拉格朗日单元富集的四边形和六面体网格线弹性无锁求解器
- DOI:
10.1016/j.camwa.2020.07.014 - 发表时间:
2020-09 - 期刊:
- 影响因子:2.9
- 作者:
Graham Harper;Ruishu Wang;Jiangguo Liu;Simon Tavener;Ran Zhang - 通讯作者:
Ran Zhang
Jiangguo Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiangguo Liu', 18)}}的其他基金
Developing Efficient and Robust Computational Tools for Subdiffusive Transport in Poroelastic Media
开发用于多孔弹性介质中的次扩散传输的高效且鲁棒的计算工具
- 批准号:
2208590 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Developing Novel Numerical Methods for Flow and Transport in Porous Media
开发多孔介质中流动和传输的新型数值方法
- 批准号:
1419077 - 财政年份:2014
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
New techniques in characteristic finite element methods for flow problems
流动问题特征有限元方法新技术
- 批准号:
0915253 - 财政年份:2009
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




