Flows, circles, and dynamics at infinity

无限远的流动、循环和动力学

基本信息

  • 批准号:
    1820767
  • 负责人:
  • 金额:
    $ 16.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

A pendulum can be described as a flow on a 2-dimensional "phase space," whose coordinates are given by position and velocity. The mathematical system that describes the motion of a pendulum is a dynamical system. Another example is fluid dynamics, which for instance, is used to study the flow of air over an airplane wing. Often, the structure of a phase space has implications for the dynamical systems that it supports. For example, any flow on the sphere has a stationary point, which means that the corresponding dynamical system has a state that never changes. This project is concerned with the obverse of this idea: What does a flow on a space say about the space itself? The spaces we consider are 3-dimensional, like the space surrounding us; the flows are used as a tool to "flatten" the space into simpler 1- and 2-dimensional spaces, where the geometric structure of the original space is reflected in the symmetries of these flattened spaces. In addition to its implications within mathematics, this project has applications to applied dynamics, where the flattened spaces can be used to understand the stability of fluid flows. Quasigeodesic and pseudo-Anosov flows are product covered, which means that the orbit space in the universal cover is a topological plane. This plane has a natural circle at infinity, with an action of the fundamental group, which reflects the large-scale dynamics of the flow and the geometry of the manifold. This project uses techniques from dynamics, 3-manifolds, geometric group theory, and classical analysis situs to understand the relationship between a flow, its underlying manifold, and the circle at infinity. In particular, it aims to prove Calegari's conjecture that every quasigeodesic flow may be deformed into a pseudo-Anosov flow, characterize the circle actions that come from such flows, and use flows to understand cubulations and essential surfaces in hyperbolic 3-manifolds.
摆可以描述为二维“相空间”上的流动,其坐标由位置和速度给出。描述摆运动的数学系统是一个动力系统。另一个例子是流体动力学,例如,用于研究飞机机翼上的空气流动。通常,相空间的结构对它所支持的动力系统有影响。例如,球面上的任何流都有一个静止点,这意味着相应的动力系统有一个永远不变的状态。这个项目关注的是这个想法的正面:空间上的流动对空间本身意味着什么?我们所考虑的空间是三维的,就像我们周围的空间一样;流被用作一种工具,将空间“扁平化”为更简单的1维和2维空间,其中原始空间的几何结构反映在这些扁平化空间的对称性中。除了在数学中的应用外,该项目还应用于应用动力学,其中扁平空间可用于理解流体流动的稳定性。伪Anosov流和伪Anosov流是乘积覆盖的,这意味着泛覆盖中的轨道空间是一个拓扑平面。这个平面在无穷远处有一个自然的圆,具有基本群的作用,它反映了流动的大尺度动力学和流形的几何形状。这个项目使用动力学,三维流形,几何群论和经典分析位置的技术来理解流动,其基础流形和无穷远圆之间的关系。特别是,它的目的是证明Calegari的猜想,每一个quasigodesic流可以变形为一个伪Anosov流,来自这样的流的特点,圆行动,并使用流来理解cudulations和本质曲面的双曲3-流形。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Frankel其他文献

An indication for conjoint treatment: An application based on an assessment of individual psychopathology
  • DOI:
    10.1007/bf01071657
  • 发表时间:
    1977-01-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Steven Frankel
  • 通讯作者:
    Steven Frankel
The management aspect of psychotherapy with aggressive children
Orbit equivalences of pseudo-Anosov flows
  • DOI:
    10.1007/s00222-025-01332-1
  • 发表时间:
    2025-03-20
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Thomas Barthelmé;Steven Frankel;Kathryn Mann
  • 通讯作者:
    Kathryn Mann

Steven Frankel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Frankel', 18)}}的其他基金

CAREER: Universal Circles Between Dynamics and Geometry
职业:动力学与几何之间的万能圆
  • 批准号:
    2045323
  • 财政年份:
    2021
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Continuing Grant
Flows, circles, and dynamics at infinity
无限远的流动、循环和动力学
  • 批准号:
    1611768
  • 财政年份:
    2016
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Continuing Grant
Collaborative Research:Subgrid-Scale Mixing Models for Large Eddy Simulation of Turbulent Flames
合作研究:湍流火焰大涡模拟的亚网格尺度混合模型
  • 批准号:
    0651788
  • 财政年份:
    2007
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Continuing Grant

相似海外基金

Exploring the Impact of Community Engagement on STEM Undergraduates via Math Circles for Urban Elementary School Students
通过城市小学生数学圈探索社区参与对 STEM 本科生的影响
  • 批准号:
    2236229
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Healing Circles of Engagement Weaving Relationships in Research : An Indigenous Research Cafe
在研究中编织关系的治愈​​圈:本土研究咖啡馆
  • 批准号:
    485684
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Miscellaneous Programs
NSF INCLUDES Alliance: Cultivating Indigenous Research Communities for Leadership in Education and STEM (CIRCLES) Alliance
NSF 包括联盟:培养本土研究社区以发挥教育和 STEM 领导力 (CIRCLES) 联盟
  • 批准号:
    2217344
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Cooperative Agreement
Evaluation of Circles of Safety? for the Primary Prevention of Child Sexual Abuse
安全圈的评估?
  • 批准号:
    10705817
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
Mobilizing resilience through Community-to-community (C2C) exchange: Seven Generations thinking for wellness and diabetes prevention
通过社区对社区 (C2C) 交流调动复原力:七代人对健康和糖尿病预防的思考
  • 批准号:
    474005
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Operating Grants
Sex Differences in Peer Support and Self-Management: A Secondary Analysis of a mHealth Intervention (Healing Circles) in People with Cardiovascular Disease
同伴支持和自我管理方面的性别差异:心血管疾病患者移动医疗干预(治疗圈)的二次分析
  • 批准号:
    486621
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Studentship Programs
Evaluation of Circles of Safety? for the Primary Prevention of Child Sexual Abuse
安全圈的评估?
  • 批准号:
    10558054
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
Building Capacity for Smoky Mountain Noyce Scholars through Mathematics Teacher Circles
通过数学教师圈培养烟山诺伊斯学者的能力
  • 批准号:
    2151839
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Travel: Math Circles Around the World Conference
旅行:世界数学界会议
  • 批准号:
    2133766
  • 财政年份:
    2021
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Towards a Ludic reading of Contemporary Urban Public Domains: Mapping & Interpreting Hong Kong protests' interventions as Urban Circles of Play
对当代城市公共领域的疯狂解读:绘图
  • 批准号:
    2571981
  • 财政年份:
    2021
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了