Improving Particle Filter Performance in Spatially-Extended Problems Using Generalized Random Field Likelihoods

使用广义随机场似然提高空间扩展问题中的粒子滤波器性能

基本信息

  • 批准号:
    1821074
  • 负责人:
  • 金额:
    $ 21.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Ensembles of model simulations are used in a variety of fields to estimate and predict things like rain, plankton blooms, or oil well pressure. Ensembles are used to provide uncertainty quantification to the predictions: one wants to know not just the most likely estimate but also how likely this estimate is, and whether any other outcomes are likely. The main mathematical framework that underpins the rigorous use of ensembles for uncertainty quantitfication is called, for historical reasons, the 'particle filter.' Each ensemble member is a 'particle.' Unfortunately particle filters do not work well for problems in high dimensions -- a `dimension' can be loosely understood here as a location where observational data is available, not the dimensions of space and time -- since they require an astronomically large number of ensemble members. This project will develop methods to improve the performance of particle filters in problems with spatial extent, like weather forecasting. The improvement comes by reducing the effective dimensionality by smoothing the observations. For example, millions of satellite observations of the atmosphere and oceans are taken each day; the project reduces the dimensionality of this data in a manner qualitatively similar to compressing an image. Since the required ensemble size for a particle filter is exponentially sensitive to the effective dimension of the system, even a small compression of the data can lead to enormous improvements in the performance of the particle filter.The sequential importance sampling particle filter with resampling is known to converge, in the limit of infinite ensemble size, to the Bayesian posterior of the filtering problem for dynamical systems (under mild assumptions). Unfortunately the rate of convergence is slow: the required ensemble size is exponential in the effective dimension of the system. This is prohibitive for spatially-extended problems like weather forecasting, where the effective dimension is enormous. Alternative methods like the ensemble Kalman filters are very successful in practice, but there is no rigorous analysis relating the distribution that the ensemble members represent and the true Bayesian posterior. This project aims to improve particle filter performance by reducing the effective dimensionality of the system for spatially extended problems. The true likelihood representing the relationship between the observational data and the system state is altered by smoothing the observations. This reduces the effective dimensionality of the system and is equivalent to modeling the observation error as a generalized random field. Although the particle filter converges more rapidly, it converges to a distribution that is not the true Bayesian posterior. However, the character of the error between the true and approximate posteriors is known and can be controlled to balance accuracy and cost, unlike the ensemble Kalman filters where the difference between the ensemble distribution and the true posterior is unknown and uncontrolled. The main technical goal of the project is to develop smoothing operators that can be applied to scattered spatial data in Cartesian coordinates or on the sphere. These operators need to be computationally efficient, and to allow the degree of smoothing to be tunable. Fast methods will be developed based on radial basis function interpolation of the data, followed by the fast application of a smoothing integral operator, approximated using multi-resolution Gaussian atoms. The method will be applied to meteorological data to build intuition on how the degree of smoothing impacts the posterior. If necessary, the method will be combined with other methods for improving particle filter performance, like implicit sampling or optimal transport.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模型模拟的集合被用于各种领域,以估计和预测降雨、浮游生物水华或油井压力等。集成用于为预测提供不确定性量化:人们不仅想知道最有可能的估计,还想知道这个估计的可能性,以及是否有其他结果可能。由于历史原因,支持对不确定性量化严格使用集合的主要数学框架被称为“粒子滤波器”。每个系综成员都是一个粒子。“不幸的是,粒子滤波器在高维问题上不起作用--这里的‘维’可以粗略地理解为观测数据可用的位置,而不是空间和时间的维--因为它们需要天文学上大量的系综成员。该项目将开发方法来提高粒子滤波器在空间范围问题中的性能,如天气预报。通过平滑观测值来降低有效维度,从而实现改进。例如,每天对大气和海洋进行数百万次卫星观测;该项目以类似于压缩图像的方式减少了这些数据的维度。由于粒子滤波器所需的集合规模对系统的有效维数是指数敏感的,因此即使是很小的数据压缩也会导致粒子滤波器性能的巨大改善。已知具有重采样的序列重要性采样粒子滤波器在无限集合规模的限制下收敛,到动态系统的过滤问题的贝叶斯后验(在温和的假设下)。不幸的是,收敛速度很慢:所需的系综大小在系统的有效维度上是指数的。这对于像天气预报这样的空间扩展问题是禁止的,其中有效维度是巨大的。其他方法,如集合卡尔曼滤波器在实践中是非常成功的,但没有严格的分析相关的分布,集合成员代表和真正的贝叶斯后验。该项目旨在通过减少空间扩展问题的系统的有效维数来提高粒子滤波器的性能。表示观测数据和系统状态之间的关系的真实似然通过平滑观测值来改变。这降低了系统的有效维数,相当于将观测误差建模为广义随机场。虽然粒子滤波收敛更快,但它收敛到的分布不是真正的贝叶斯后验分布。然而,真实和近似后验之间的误差的特性是已知的,并且可以被控制以平衡精度和成本,这与集合卡尔曼滤波器不同,在集合卡尔曼滤波器中,集合分布和真实后验之间的差异是未知的和不受控制的。该项目的主要技术目标是开发可应用于笛卡尔坐标系或球面上的散乱空间数据的平滑算子。这些算子需要计算效率高,并允许平滑程度可调。快速方法将基于数据的径向基函数插值开发,然后快速应用平滑积分算子,使用多分辨率高斯原子近似。该方法将被应用于气象数据,以建立直观的平滑程度如何影响后验。如有必要,该方法将与其他方法相结合,以提高粒子滤波器的性能,如隐式采样或优化transport.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Fast Tunable Blurring Algorithm for Scattered Data
一种针对分散数据的快速可调模糊算法
Analog ensemble data assimilation and a method for constructing analogs with variational autoencoders
Machine learning techniques to construct patched analog ensembles for data assimilation
用于构建用于数据同化的修补模拟集合的机器学习技术
  • DOI:
    10.1016/j.jcp.2021.110532
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Yang, L. Minah;Grooms, Ian
  • 通讯作者:
    Grooms, Ian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Grooms其他文献

Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation
  • DOI:
    10.1016/j.jcp.2011.02.007
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ian Grooms;Keith Julien
  • 通讯作者:
    Keith Julien
“Machine Learning for Data Assimilation”
“数据同化的机器学习”
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nora Schenk Dwd;Marc Bocquet;Manuel Pulido;Lars Nerger;Germany Awi;Quentin Malartic;A. Farchi;Lucia Minah Yang;Ian Grooms;Zofia Stanley;Maria Aufschlager;C. Irrgang;J. Saynisch‐Wagner
  • 通讯作者:
    J. Saynisch‐Wagner
Backscatter in energetically-constrained Leith parameterizations
  • DOI:
    10.1016/j.ocemod.2023.102265
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ian Grooms
  • 通讯作者:
    Ian Grooms

Ian Grooms的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Grooms', 18)}}的其他基金

Methods for Nonlinear, Non-Gaussian, and Data-Driven Ensemble Data Assimilation in Large-Scale Applications
大规模应用中非线性、非高斯和数据驱动的集合数据同化方法
  • 批准号:
    2152814
  • 财政年份:
    2022
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Ocean Transport and Eddy Energy
合作研究:海洋运输和涡流能
  • 批准号:
    1912332
  • 财政年份:
    2019
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Standard Grant
A Stochastic Approach to Representing Unresolved Mesoscales in Ocean Circulation Models
表示海洋环流模型中未解决的中尺度的随机方法
  • 批准号:
    1736708
  • 财政年份:
    2017
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Standard Grant

相似国自然基金

环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
  • 批准号:
    11905220
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
  • 批准号:
    21902147
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
  • 批准号:
    30560052
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of flood prediction method using particle filter and gaussian process regression
使用粒子滤波器和高斯过程回归开发洪水预测方法
  • 批准号:
    23K04052
  • 财政年份:
    2023
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hybrid data assimilation methods with a particle filter for forecasts of extreme weather events
用于极端天气事件预报的带有粒子滤波器的混合数据同化方法
  • 批准号:
    21K13995
  • 财政年份:
    2021
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Filter Forensics: A novel method for exploring exposure to particle-bound contaminants
过滤器取证:一种探索颗粒结合污染物暴露情况的新方法
  • 批准号:
    RGPIN-2014-06698
  • 财政年份:
    2021
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Discovery Grants Program - Individual
Filter Forensics: A novel method for exploring exposure to particle-bound contaminants
过滤器取证:一种探索颗粒结合污染物暴露情况的新方法
  • 批准号:
    RGPIN-2014-06698
  • 财政年份:
    2020
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Discovery Grants Program - Individual
Automation of a state space modeling by an integration of the variational auto encoder and particle filter
通过变分自动编码器和粒子滤波器的集成实现状态空间建模的自动化
  • 批准号:
    19H04186
  • 财政年份:
    2019
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory and Algorithms for Feedback Particle Filter
反馈粒子滤波器的理论和算法
  • 批准号:
    1761622
  • 财政年份:
    2018
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Standard Grant
Filter Forensics: A novel method for exploring exposure to particle-bound contaminants
过滤器取证:一种探索颗粒结合污染物暴露情况的新方法
  • 批准号:
    RGPIN-2014-06698
  • 财政年份:
    2017
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Discovery Grants Program - Individual
Study on uncertainty of cumulonimbus initiation and development using particle filter
利用粒子滤波器研究积雨云生成和发展的不确定性
  • 批准号:
    17H02962
  • 财政年份:
    2017
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Particle counter for ecophysiological studies of benthic filter-feeders
用于底栖滤食动物生态生理学研究的粒子计数器
  • 批准号:
    RTI-2017-00348
  • 财政年份:
    2016
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Research Tools and Instruments
Filter Forensics: A novel method for exploring exposure to particle-bound contaminants
过滤器取证:一种探索颗粒结合污染物暴露情况的新方法
  • 批准号:
    RGPIN-2014-06698
  • 财政年份:
    2016
  • 资助金额:
    $ 21.98万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了