EAGER: qRNA-PAINT as a method for high-throughput, quantitative, single molecule analysis of cellular RNAs and their networks
EAGER:qRNA-PAINT 作为细胞 RNA 及其网络的高通量、定量、单分子分析方法
基本信息
- 批准号:1822293
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
RNA molecules are used by cells to transfer and decode information stored in DNA. This includes messenger RNAs that encode data for making proteins and small RNAs that play important regulatory roles. Plant biologists continue to discover exciting, novel roles for small RNAs during plant growth, development, and responses to the environment. Like nearly all molecules in cells, the ability of small RNAs to carry out their functions depends on their location and quantity. However, due to their small size, it has been particularly challenging to detect and locate small RNAs. In plants, current methods can only detect one, or at most, two small RNAs at a time. This project develops a new technique called qRNA-PAINT to detect, quantify, and localize tens to hundreds of small RNAs in a single sample, simultaneously. qRNA-PAINT makes it possible to examine the complex relationships of small RNAs inside of a plant cell with super-resolution precision. Due to the wide-ranging role of small RNAs, this technique will have broad impacts on scientists seeking to answer fundamental biological questions in both plants and animals. Insights into the roles of small RNAs in plant signalling pathways may be translatable to increasing crop plant productivity and resistance to environmental stress and pathogens.In the current age of genomics, there is a wealth of expression data for small RNAs. However, methods to examine the subcellular, cellular, and even tissue level localization of small RNAs are limited. This has made it challenging to examine the relationship of different RNAs, such as miRNAs, siRNAs, mRNAs, and miRNA targets. This proposal will fully develop the qRNA-PAINT method to examine the relationship of tens to hundreds of different small RNAs. qRNA-PAINT is a modification of the exchange points accumulation for imaging in nanoscale topography (exchange-PAINT) method, which has been used to detect up to ten different protein targets. It accomplishes this by using the stochastic binding of dye labeled imager oligonucleotides to docking strands attached to antibodies. The qRNA-PAINT method does not use antibodies, but rather just locked nucleic acid (LNA) probes connected to the docking strands for exchange-PAINT. Consequently, it potentially can be massively multiplexed for numerous small RNAs, to examine signaling networks in single cells and tissue types. The maize anther will be used as the model system and qRNA-PAINT data will complement the already available extensive set of sequencing data. Furthermore, qRNA-PAINT will be combined with exchange-PAINT (for proteins) to examine the relative localization of protein machinery to study the biogenesis of different types of small RNAs. Ultimately, it will be used to answer outstanding questions on the spatio-temporal regulation of small RNA biogenesis and signaling networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
RNA分子被细胞用来传递和解码储存在DNA中的信息。这包括编码制造蛋白质的数据的信使RNA和发挥重要调控作用的小RNA。 植物生物学家继续发现小RNA在植物生长、发育和对环境的反应中令人兴奋的新作用。 像细胞中几乎所有的分子一样,小RNA执行其功能的能力取决于它们的位置和数量。 然而,由于它们的小尺寸,检测和定位小RNA特别具有挑战性。在植物中,目前的方法一次只能检测一个或最多两个小RNA。该项目开发了一种名为qRNA-PAINT的新技术,可以同时检测,定量和定位单个样本中的数十到数百个小RNA。qRNA-PAINT可以以超分辨率精度检查植物细胞内小RNA的复杂关系。 由于小RNA的广泛作用,这项技术将对寻求回答植物和动物基本生物学问题的科学家产生广泛影响。小分子RNA在植物信号传导途径中的作用的深入了解可能有助于提高作物的生产力和对环境胁迫和病原体的抗性。 然而,检查小RNA的亚细胞、细胞甚至组织水平定位的方法是有限的。这使得研究不同RNA(如miRNA、siRNA、mRNA和miRNA靶标)之间的关系变得具有挑战性。 该提案将全面发展qRNA-PAINT方法,以检查数十到数百种不同小RNA之间的关系。qRNA-PAINT是用于纳米级形貌成像的交换点累积(exchange-PAINT)方法的改进,其已用于检测多达10种不同的蛋白质靶标。 它通过使用染料标记的成像寡核苷酸与附着于抗体的对接链的随机结合来实现这一点。 qRNA-PAINT方法不使用抗体,而是仅使用连接到对接链的锁核酸(LNA)探针用于交换PAINT。 因此,它有可能对许多小RNA进行大规模复用,以检查单细胞和组织类型中的信号网络。玉米花药将用作模型系统,qRNA-PAINT数据将补充已经可用的广泛测序数据集。 此外,qRNA-PAINT将与exchange-PAINT(用于蛋白质)结合,以检查蛋白质机器的相对定位,从而研究不同类型的小RNA的生物起源。最终,它将被用于回答小RNA生物发生和信号网络的时空调控方面的突出问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative, super-resolution localization of small RNAs with sRNA-PAINT
- DOI:10.1093/nar/gkaa623
- 发表时间:2020-09-18
- 期刊:
- 影响因子:14.9
- 作者:Huang, Kun;Demirci, Feray;Caplan, Jeffrey L.
- 通讯作者:Caplan, Jeffrey L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Caplan其他文献
Jeffrey Caplan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Caplan', 18)}}的其他基金
RAPID: Enzyme-free detection of SARS-CoV2 using a PAINT-based single-molecule microscopy assay
RAPID:使用基于 PAINT 的单分子显微镜检测法对 SARS-CoV2 进行无酶检测
- 批准号:
2036801 - 财政年份:2020
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant