RR: The Generalizability and Replicability of Twitter Data for Population Research

RR:Twitter 数据在人口研究中的普遍性和可复制性

基本信息

  • 批准号:
    1823633
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Social media data have the potential to track phenomena in real time, such as percentage of the population fearful in the minutes after a disaster or terrorist event, or the degree of anger immediately after the announcement of a jury verdict in a highly publicized case. In each of these examples, it would be difficult to conduct a field survey in real time, and respondents may not be able to reconstruct how they felt or behaved at the time of the event, even if interviewed just a few days later. Social media data have the potential to overcome these limitations. This project will analyze how the application of survey weighting can rebalance samples of Twitter data, and assesses how well this rebalancing will allow valid generalizations about population behaviors. The project will provide a foundation for future advances in the use of social media data for scientific, health, and applied research, thus permitting a wide variety of inferences useful in social policy formulation. A key aspect of the project will provide new evidence regarding the accuracy of migration flows in real time, thus assisting social policy relevant to providing assistance in response to natural disasters. This project will evaluate the extent to which Twitter users represent or misrepresent the population across different demographic groups and test the feasibility of developing weights that, when applied to Twitter data, make the results more representative of the underlying population. The project conducts the research at the county level in the United States from January 2014-December 2017, using 96% geotagged tweets in the study period and 100% tweets in one month. The project will: (1) extend and refine existing methods for imputing the gender, age, race/ethnicity, and county of residence of each Twitter user; (2) use these values to assess the representativeness of Twitter samples at the county level and explain the determinants of biases; (3) adapt five methods developed for probability or non-probability surveys to reweight Twitter samples and compare their performance in producing model estimates that can be used to infer characteristics of the general population; and (4) test the feasibility of using Twitter data to estimate migration at the county level by comparing to the Internal Revenue Service migration data, as well as estimate Puerto Rico migrants to the continent after Hurricane Maria. Analysis of these migration data will provide a new source of information with which to estimate migration flows in real time and at unprecedentedly detailed geographic scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交媒体数据有可能实时追踪各种现象,比如灾难或恐怖事件发生后几分钟内感到恐惧的人口比例,或者在一个备受关注的案件中,陪审团宣布裁决后立即出现的愤怒程度。在这些例子中,很难进行实时的实地调查,即使在几天后接受采访,受访者也可能无法重建他们在事件发生时的感受或行为。社交媒体数据有潜力克服这些限制。该项目将分析调查加权的应用如何重新平衡Twitter数据样本,并评估这种重新平衡将如何允许对人口行为进行有效的概括。该项目将为今后在利用社会媒体数据进行科学、卫生和应用研究方面取得进展奠定基础,从而使各种各样的推论对制定社会政策有用。该项目的一个关键方面将提供有关实时移民流动准确性的新证据,从而协助与提供援助以应对自然灾害有关的社会政策。该项目将评估Twitter用户在不同人口群体中代表或歪曲人口的程度,并测试开发权重的可行性,当应用于Twitter数据时,使结果更能代表潜在人口。该项目于2014年1月至2017年12月在美国县一级进行研究,研究期间使用96%的地理标记推文,一个月内使用100%的推文。该项目将:(1)扩展和完善现有的方法,用于输入每个Twitter用户的性别、年龄、种族/民族和居住地;(2)利用这些值来评估县级Twitter样本的代表性,并解释偏差的决定因素;(3)采用概率或非概率调查开发的五种方法来重新加权Twitter样本,并比较它们在产生可用于推断一般人群特征的模型估计中的表现;(4)通过与美国国税局(Internal Revenue Service)的移民数据比较,检验使用Twitter数据估算县一级移民的可行性,以及估算飓风玛丽亚后波多黎各移民到美洲大陆的可行性。对这些移民数据的分析将提供一个新的信息来源,用来实时地、以前所未有的详细地理尺度估计移民流动。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A multi-modal approach towards mining social media data during natural disasters - a case study of Hurricane Irma
  • DOI:
    10.1016/j.ijdrr.2020.102032
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Mohanty;B. Biggers;S. SayedAhmed;Nastaran Pourebrahim;E. Goldstein;Rick L. Bunch;G. Chi;F. Sadri;Tom P. McCoy;A. Cosby
  • 通讯作者:
    S. Mohanty;B. Biggers;S. SayedAhmed;Nastaran Pourebrahim;E. Goldstein;Rick L. Bunch;G. Chi;F. Sadri;Tom P. McCoy;A. Cosby
Evaluating the Representativeness in the Geographic Distribution of Twitter User Population
评估 Twitter 用户群体地理分布的代表性
  • DOI:
    10.1145/3281354.3281360
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yin, Junjun;Chi, Guangqing;Van Hook, Jennifer
  • 通讯作者:
    Van Hook, Jennifer
Energy choices in Alaska: Mining people's perception and attitudes from geotagged tweets
  • DOI:
    10.1016/j.rser.2020.109781
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Abdar, Moloud;Basiri, Mohammad Ehsan;Asadi, Somayeh
  • 通讯作者:
    Asadi, Somayeh
Assessing the validity of mobile device data for estimating visitor demographics and visitation patterns in Yellowstone National Park
  • DOI:
    10.1016/j.jenvman.2022.115410
  • 发表时间:
    2022-06-10
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Liang, Yun;Yin, Junjun;Chi, Guangqing
  • 通讯作者:
    Chi, Guangqing
Using social media user profiles to identify visitor demographics and origins in Yellowstone national park
  • DOI:
    10.1016/j.jort.2023.100620
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yun Liang;Junjun Yin;Soyoung Q. Park;Bing Pan;G. Chi;Z. Miller
  • 通讯作者:
    Yun Liang;Junjun Yin;Soyoung Q. Park;Bing Pan;G. Chi;Z. Miller
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guangqing Chi其他文献

Unveiling global narratives of restoration policy: Big data insights into competing framings and implications
揭示恢复政策的全球叙事:大数据对相互竞争的框架及其影响的洞察
  • DOI:
    10.1016/j.geoforum.2025.104241
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Ida N.S. Djenontin;Harry W. Fischer;Junjun Yin;Guangqing Chi
  • 通讯作者:
    Guangqing Chi
Geographic Realities of Abortion Access in Texas: Exploring the Heterogeneous Effects of Texas Senate Bill 8 with Mobile Phone Data
  • DOI:
    10.1007/s11113-025-09948-0
  • 发表时间:
    2025-05-05
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Jessica Miller;Guangqing Chi
  • 通讯作者:
    Guangqing Chi
Fiji’s policy response to COVID-19 and the integration of Indigenous voices
斐济对 COVID-19 的政策反应和融合土著声音
  • DOI:
    10.1016/j.envsci.2024.103791
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kerrie Pickering;E. Galappaththi;James Ford;Tristan Pearce;Lui Manuel;Epi Dauniwaqalevu;Bianca van Bavel;I. Arotoma;Carol Zavaleta;Chrishma D Perera;Indunil Dharmasiri;Keith Hyams;Guangqing Chi;Jonathan Nkalubo;Joana Bezerra;C. Togarepi;Martha Hangula;Francis Awaafo;Hans Amukugo
  • 通讯作者:
    Hans Amukugo
Assessing building thermal resilience in response to heatwaves through integrating a social vulnerability lens
通过整合社会脆弱性视角评估建筑应对热浪的热弹性
  • DOI:
    10.1016/j.jobe.2024.111219
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Suman Paneru;Xinyue Xu;Julian Wang;Guangqing Chi;Yuqing Hu
  • 通讯作者:
    Yuqing Hu
Carbon emissions and government interventions in urban agglomerations of China: An integrated GWR and neural network approach
中国城市群的碳排放与政府干预:一种综合地理加权回归和神经网络的方法
  • DOI:
    10.1016/j.apgeog.2025.103645
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Yang Xu;Feng Xu;Guangqing Chi;Ziqiang Gong
  • 通讯作者:
    Ziqiang Gong

Guangqing Chi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guangqing Chi', 18)}}的其他基金

NNA Research: Collaborative Research: Arctic, Climate, and Earthquakes (ACE): Seismic Resilience and Adaptation of Arctic Infrastructure and Social Systems amid Changing Climate
NNA 研究:合作研究:北极、气候和地震 (ACE):气候变化中北极基础设施和社会系统的抗震能力和适应
  • 批准号:
    2220221
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RAPID: Using Mobile Phone Data to Understand the Impacts of the COVID-19 Pandemic on Food Assistance Use in Alaska
RAPID:使用手机数据了解 COVID-19 大流行对阿拉斯加粮食援助使用的影响
  • 批准号:
    2207436
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: SAI: Collaborative Research: Community-Driven Innovation for Resilient Bridges in Remote Communities
EAGER:SAI:协作研究:偏远社区弹性桥梁的社区驱动创新
  • 批准号:
    2121909
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: COVID-19 Preparedness in Remote Fishing Communities in Rural Alaska
RAPID:合作研究:阿拉斯加农村偏远渔业社区的 COVID-19 准备情况
  • 批准号:
    2032790
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NNA Track 1: Pursuing Opportunities for Long-term Arctic Resilience for Infrastructure and Society (POLARIS)
NNA 第 1 轨道:为基础设施和社会寻求北极长期复原力的机会 (POLARIS)
  • 批准号:
    1927827
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRISP Type 1/Collaborative Research: Population-Infrastructure Nexus: A Heterogeneous Flow-based Approach for Responding to Disruptions in Interdependent Infrastructure Systems
CRISP 类型 1/协作研究:人口-基础设施关系:一种基于异构流的方法,用于响应相互依赖的基础设施系统的中断
  • 批准号:
    1541136
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Improving the Generalizability of Deep Neural Networks by Teaching Single Nucleotide Polymorphisms Associated with LDCT Features
通过教授与 LDCT 特征相关的单核苷酸多态性来提高深度神经网络的通用性
  • 批准号:
    10905205
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
CAREER: Small Data in a Big World: Balancing Interpretability and Generalizability for Data Integration in Clinical Neuroscience
职业:大世界中的小数据:平衡临床神经科学数据集成的可解释性和概括性
  • 批准号:
    2322823
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
DARSaW: Developing, Assessing, and Refining Synthetic Sampling Weights to Improve Generalizability of the All of Us Research Program Data
DARSaW:开发、评估和细化合成采样权重,以提高我们所有人研究计划数据的普遍性
  • 批准号:
    10796237
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
PsyRAT: Extensible Open-Source Software for Applying Generalizability Theory to Assess Psychometric Reliability of Trial-Wise Scores and Optimize Tasks for RDoC
PsyRAT:可扩展的开源软件,用于应用概括性理论来评估试验分数的心理测量可靠性并优化 RDoC 任务
  • 批准号:
    10676972
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Generalizability of a Comprehensive Workforce-Led Initiative to Support the Health and Safety of Commercial Fishermen in the Northeastern United States
支持美国东北部商业渔民健康和安全的以劳动力为主导的综合举措的普遍性
  • 批准号:
    10553445
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Collaborative Research: Machine Learning-assisted Modeling and Design of Approximate Computing with Generalizability and Interpretability
协作研究:机器学习辅助建模和具有通用性和可解释性的近似计算设计
  • 批准号:
    2202310
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Generalizability and transportability in clinical trials
临床试验中的普遍性和可移植性
  • 批准号:
    2740216
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Machine Learning-assisted Modeling and Design of Approximate Computing with Generalizability and Interpretability
具有通用性和可解释性的机器学习辅助建模和近似计算设计
  • 批准号:
    2202329
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Improving the Generalizability of Deep Neural Networks by Teaching them Lung Cancer Pathophysiology
通过教授肺癌病理生理学来提高深度神经网络的通用性
  • 批准号:
    10529498
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Design and analysis advances to improve generalizability of clinical trials for treating opioid use disorder
设计和分析的进展可提高治疗阿片类药物使用障碍的临床试验的普遍性
  • 批准号:
    10490616
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了