I-Corps: Embedded Machine Vision for Accurate Gait Analyses and Body Movement Measurements

I-Corps:嵌入式机器视觉,用于准确的步态分析和身体运动测量

基本信息

  • 批准号:
    1823766
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is to revolutionize conventional rehabilitation assistant and body movement assessment tools with low-cost machine vision based solutions by maximizing the capability of ubiquitous tablets and 2D cameras, which have significant cost and accessibility advantage over more expensive 3D cameras. A set of tablet/smartphone Apps can be developed base on the embedded machine vision technology, and the team plan to create related services using a subscription model. This innovation will benefit broad healthcare market, which includes rehab facilities, surgery/neurology outpatient clinics, physical therapy clinics, stroke centers, and individuals. Overall, the innovation will make embedded machine vision technology accessible to and serve many population groups in the society. This I-Corps project is based on preliminary results that we obtained on a PC platform to identify and track human body joint points in close to real-time. The prototype leverages novel machine learning algorithms and high performance processors (graphics processing units). Our next phase of research is to generate depth map from a 2D camera, recognize and track body joint points, and score body movements, all on a tablet platform. The challenges include depth generation with 2D images and efficient models and algorithms to execute on a resource constraint embedded platform. The team will leverage embedded deep learning techniques to optimize the algorithms towards an embedded processor architecture on modern tablets so that the proof-of-concept can deliver satisfactory performance. The team also plan to work with a medical doctor and a rehabilitation facility advisor to review and refine the software features and validate the early prototype.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个i-Corps项目的更广泛的影响/商业潜力是通过最大限度地发挥无处不在的平板电脑和2D摄像头的能力,用基于机器视觉的低成本解决方案来彻底改变传统的康复助手和身体运动评估工具,这些设备与更昂贵的3D摄像头相比具有显著的成本和可及性优势。基于嵌入式机器视觉技术,可以开发一套平板电脑/智能手机应用程序,团队计划使用订阅模式创建相关服务。这一创新将惠及广阔的医疗市场,包括康复设施、外科/神经科门诊诊所、理疗诊所、中风中心和个人。总体而言,这项创新将使嵌入式机器视觉技术能够接触到并服务于社会上的许多群体。这个i-Corps项目是基于我们在PC平台上获得的初步结果,以接近实时地识别和跟踪人体关节点。该原型利用了新的机器学习算法和高性能处理器(图形处理单元)。我们下一阶段的研究是从2D摄像头生成深度图,识别和跟踪身体关节点,并对身体动作进行评分,所有这些都在平板电脑平台上进行。这些挑战包括利用2D图像生成深度,以及在资源受限的嵌入式平台上执行高效的模型和算法。该团队将利用嵌入式深度学习技术,针对现代平板电脑上的嵌入式处理器架构优化算法,以便概念验证能够提供令人满意的性能。该团队还计划与一名医生和一名康复设施顾问合作,审查和改进软件功能并验证早期原型。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan Luo其他文献

Experimental Study on Compatibility of C6F12O/CO2 Gas Mixture with Eco-friendly Insulating Medium and Copper
C6F12O/CO2气体混合物与环保绝缘介质和铜相容性实验研究
Multi-route planning of multimodal transportation for oversize and heavyweight cargo based on reconstruction
基于重构的大件、超重货物多式联运多路线规划
  • DOI:
    10.1016/j.cor.2020.105172
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yan Luo;Yinggui Zhang;Jiaxiao Huang;Huiyu Yang
  • 通讯作者:
    Huiyu Yang
An Efficient Iterative Method for Solving Parameter-Dependent and Random Convection–Diffusion Problems
解决参数相关和随机对流扩散问题的有效迭代方法
  • DOI:
    10.1007/s10915-021-01737-z
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Xiaobing Feng;Yan Luo;Liet Vo;Zhu Wang
  • 通讯作者:
    Zhu Wang
Extremal solutions for second-order functional differential equations with nonlinear boundary conditions
具有非线性边界条件的二阶泛函微分方程的极值解
QSim: Framework for Cycle-accurate Simulation on Out-of-Order Processors based on QEMU
QSim:基于 QEMU 的乱序处理器周期精确仿真框架

Yan Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yan Luo', 18)}}的其他基金

PFI-RP: BioSPACE: Biosensing Surveillance of Pathogens in Aquaculture and Coastal Environments
PFI-RP:BioSPACE:水产养殖和沿海环境中病原体的生物传感监测
  • 批准号:
    2329826
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CICI: RSARC: SECTOR: Building a Secure and Compliant Cyberinfrastructure for Translational Research
CICI:RSARC:部门:为转化研究构建安全且合规的网络基础设施
  • 批准号:
    1738965
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CICI: Secure Data Architecture: STREAMS: Secure Transport and REsearch Architecture for Monitoring Stroke Recovery
CICI:安全数据架构:STREAMS:用于监测中风恢复的安全传输和研究架构
  • 批准号:
    1547428
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: SDNatics: Big Data Analytics of Software Defined Networks to Understand, Predict and Protect Critical Computer Networks
I-Corps:SDNatics:软件定义网络的大数据分析,用于理解、预测和保护关键计算机网络
  • 批准号:
    1530989
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
IRNC: AMI: Collaborative Research: Software-Defined and Privacy-Preserving Network Measurement Instrument and Services for Understanding Data-Driven Science Discovery
IRNC:AMI:协作研究:软件定义和隐私保护的网络测量仪器和服务,用于理解数据驱动的科学发现
  • 批准号:
    1450996
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CC*IIE Networking Infrastructure: FLowell: Accelerating Data-Driven Scientific Research at the University of Massachusetts Lowell
CC*IIE 网络基础设施:FLowell:加速马萨诸塞州洛厄尔大学数据驱动的科学研究
  • 批准号:
    1440737
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
NSF Travel Grant Support for IEEE International Conference on Computer Communications and Network 2010 Conference
NSF 旅行补助金支持 IEEE 国际计算机通信和网络会议 2010 年会议
  • 批准号:
    0952279
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CRI: IAD: Programmable Network Infrastructure with Emerging Technologies
CRI:IAD:采用新兴技术的可编程网络基础设施
  • 批准号:
    0709001
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

Embedded Internet体系结构及应用研究
  • 批准号:
    69873007
  • 批准年份:
    1998
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Transparency and super-resolution of river interiors using a physics-embedded machine-learning (PINNs)
使用物理嵌入式机器学习 (PINN) 实现河流内部的透明度和超分辨率
  • 批准号:
    23K17807
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: STEM Learning Embedded in a Machine-in-the-Loop Collaborative Story Writing Game
协作研究:嵌入机器在环协作故事写作游戏中的 STEM 学习
  • 批准号:
    2202506
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: STEM Learning Embedded in a Machine-in-the-LoopCollaborative Story Writing Game
协作研究:嵌入机器在环协作故事写作游戏中的 STEM 学习
  • 批准号:
    2202496
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
A Kernelnalized learning method as a model of insect-brain and its application for an incremental learning algorithm for embedded machine learning systems
作为昆虫大脑模型的内核化学习方法及其在嵌入式机器学习系统增量学习算法中的应用
  • 批准号:
    22K12176
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine Learning for Improving Embedded System Attacks
用于改善嵌入式系统攻击的机器学习
  • 批准号:
    RGPIN-2020-06175
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Machine Learning for Improving Embedded System Attacks
用于改善嵌入式系统攻击的机器学习
  • 批准号:
    RGPIN-2020-06175
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Construction of quality model for embedded software systems including machine learning computation
包括机器学习计算在内的嵌入式软件系统质量模型的构建
  • 批准号:
    21K04560
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine Learning for Improving Embedded System Attacks
用于改善嵌入式系统攻击的机器学习
  • 批准号:
    RGPIN-2020-06175
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Energy-Efficient Machine Learning for Mobile/Embedded Systems
适用于移动/嵌入式系统的节能机器学习
  • 批准号:
    2480917
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
Machine Learning for Improving Embedded System Attacks
用于改善嵌入式系统攻击的机器学习
  • 批准号:
    DGECR-2020-00445
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了