Job Search, Hiring, and Matching With Two-Sided Limited Information About Workseekers' Skills
关于求职者技能的双面有限信息的求职、招聘和匹配
基本信息
- 批准号:1824413
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project uses a series of experimental methods to study the role of inefficient information flows in explaining poor labor market outcomes. Specifically, the research conducts a series of experiments in the field and longitudinal surveys to understand how labor market outcomes change when jobseekers and firms have better information about jobseekers' skills and potential productivity. The experimental interventions involve measuring jobseekers' skills using standardized assessments and publicizing the results of these assessments in different ways to employers and jobseekers alike. Varying the information provided allows the researchers to assess the effects of information flows on labor market outcomes. By providing information to both jobseekers and employers, this research is one of the first to study both the supply and demand side effects information flows on job matches. The results of the research project therefore provide important inputs into the formulation of labor market policies that helps both employers and jobseekers alike. The results of this research will therefore improve the efficiency of labor markets, increase employment and therefore spur economic growth. This project uses model-guided randomized experiments with firms and jobseekers to quantify the effect of better information about jobseekers' skills on labor market outcomes. The starting point is a model of job search and job posting where jobseekers have heterogenous skills and both jobseekers and firms observe these skills with error. Limited information on either side of the market can distort both jobseekers' and firms' decisions over job search, job posting, offers, and acceptances. These distortions can reduce total employment, earnings, and productivity. The experiments test this model by randomizing the information firms and jobseekers observe about jobseekers' skills in multiple dimensions (e.g. numeracy, fluid intelligence, grit). Supply-side surveys measure jobseekers' beliefs, job search, employment, and earnings. Demand-side surveys measure firms' beliefs, hiring, wage bills, productivity, and profits. Unlike existing research on information frictions in the labor market, this project studies both the supply and demand sides of the market, embeds the experiments in a model of supply and demand, and attempts to separate employment creation from employment displacement effects. The results of this research will provide guidance on policies to improve efficiency of the labor market, increase employment, and economic growth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究采用一系列实验方法,研究了低效率信息流在解释劳动力市场结果不佳方面的作用。具体而言,该研究在实地和纵向调查中进行了一系列实验,以了解当求职者和企业对求职者的技能和潜在生产力有更好的了解时,劳动力市场的结果如何变化。实验性干预措施包括使用标准化评估来衡量求职者的技能,并以不同的方式向雇主和求职者公布这些评估的结果。 通过改变所提供的信息,研究人员可以评估信息流对劳动力市场结果的影响。通过向求职者和雇主提供信息,本研究是第一个研究供求信息流对工作匹配的副作用的研究之一。 因此,研究项目的结果为制定劳动力市场政策提供了重要的投入,对雇主和求职者都有帮助。 因此,这项研究的结果将提高劳动力市场的效率,增加就业,从而刺激经济增长。 该项目使用模型引导的随机实验与企业和求职者,以量化更好的信息求职者的技能对劳动力市场的结果的影响。出发点是一个模型的求职和招聘求职者有异质性的技能和求职者和企业观察这些技能的错误。市场任何一方的有限信息都可能扭曲求职者和公司在求职、发布职位、提供和接受方面的决定。这些扭曲会减少总就业、收入和生产率。实验通过随机化公司和求职者观察到的关于求职者在多个维度(例如计算能力,流体智力,毅力)的技能的信息来测试这个模型。供应方调查衡量求职者的信念、求职、就业和收入。需求侧调查衡量公司的信念,招聘,工资账单,生产力和利润。 与以往关于劳动力市场信息摩擦的研究不同,本课题从市场的供求双方进行研究,将实验嵌入供求模型,尝试将就业创造与就业转移效应分离开来。 该研究成果将为提高劳动力市场效率、增加就业、促进经济增长等政策提供指导。该奖项体现了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Job Search and Hiring with Limited Information about Workseekers’ Skills
求职者技能信息有限的求职和招聘
- DOI:10.1257/aer.20200961
- 发表时间:2022
- 期刊:
- 影响因子:10.7
- 作者:Carranza, Eliana;Garlick, Robert;Orkin, Kate;Rankin, Neil
- 通讯作者:Rankin, Neil
LinkedIn(to) Job Opportunities: Experimental Evidence from Job Readiness Training
LinkedIn(to) 工作机会:来自工作准备培训的实验证据
- DOI:10.1257/app.20200025
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wheeler, Laurel;Garlick, Robert;Johnson, Eric;Shaw, Patrick;Gargano, Marissa
- 通讯作者:Gargano, Marissa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Garlick其他文献
Robert Garlick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Garlick', 18)}}的其他基金
Doctoral Dissertation Research in Economics: Investigating the Impact of the 'Norm to Work' on Worker Power and Labor Market Outcomes
经济学博士论文研究:调查“工作规范”对工人权力和劳动力市场结果的影响
- 批准号:
2314163 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
Search for the Dimuon decay of the Standard Model Higgs Boson using ATLAS
使用 ATLAS 搜索标准模型希格斯玻色子的 Dimuon 衰变
- 批准号:
2907975 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
- 批准号:
ST/W003880/2 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Beyond Query: Exploratory Subgraph Discovery and Search System
超越查询:探索性子图发现和搜索系统
- 批准号:
DP240101591 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Electron electric dipole moment search by using polarized ultracold molecule s
利用极化超冷分子进行电子电偶极矩搜索
- 批准号:
23K20858 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Preference-discovery and Repeated Consumer Search
偏好发现和重复消费者搜索
- 批准号:
24K04899 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Postdoctoral Fellowship: SPRF: A Comprehensive Modeling Framework for Semantic Memory Search
博士后奖学金:SPRF:语义记忆搜索综合建模框架
- 批准号:
2313985 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Can the Relational Account predict search in multiple-element displays?
关系帐户可以预测多元素显示中的搜索吗?
- 批准号:
DP240102774 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects