Understanding the Mechanism and Kinetics of Pyrrhotite-induced Damage in Concrete

了解磁黄铁矿引起混凝土损伤的机制和动力学

基本信息

项目摘要

This research will deliver fundamental knowledge necessary to rapidly and reliably distinguish durable from deleterious aggregates for concrete. Specifically, it will focus on mechanisms and kinetics of pyrrhotite-induced damage in concrete, a situation that has devastated some residential communities in the northern United States. Challenges in identifying and procuring high quality and durable construction aggregate are on the rise, as good quality virgin aggregates are being depleted. Sustainable management of natural resources requires a well-thought-out philosophy of using the remaining supplies. This project will lead to identifying optimal protocols for detection and quantification of pyrrhotite reactivity in concrete. By enabling science-driven selection of the aggregates, the costs of remediating premature deterioration and concrete degradation can be reduced. As such, societal and economic benefits are high and translate into new knowledge and technology to design sustainable built environment. The outcomes of this project will ensure safety, serviceability and continued use of concrete buildings and structures, along with protecting health and financial livelihood of their owners and occupants.The pyrrhotite damage in concrete is a result of deleterious expansions taking place when pyrrhotite (an abundant sulfide mineral in aggregates) oxidizes in contact with moisture and atmospheric oxygen, forming expansive iron hydroxides and sulfuric acid inside concrete. The latter subsequently leads to secondary damages, including acid attack, sulfate attack, and rebar corrosion. To date, pyrrhotite oxidation has been analyzed only in the context of acid mine drainage (low pH). The novelty of this research is in thorough investigation of pyrrhotite oxidation in concrete environment. Specifically, the effects of pH, temperature, RH, and oxygen level on the magnitude and rate of reaction and damage evolution in concrete will be quantified. Selective dissolution of Fe-oxide phases will be conducted and geochemical calculations executed to calculate volumetric changes resulting from pyrrhotite reactivity. Integrated oxygen transport and thermodynamic models will be created for rapid and reliable assessment and prediction of damage. While developed for pyrrhotite-related degradation, this transformative approach will be applicable to a wide array of aggregate-induced damages in concrete.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将提供必要的基础知识,以快速可靠地区分混凝土的耐久骨料和有害骨料。具体地说,它将专注于磁黄铁矿导致混凝土破坏的机制和动力学,这种情况已经摧毁了美国北部的一些居民区。由于高质量的原始骨料正在耗尽,在确定和采购高质量和耐用建筑骨料方面的挑战正在增加。自然资源的可持续管理需要一个深思熟虑的使用剩余供应的哲学。该项目将导致确定检测和量化混凝土中磁黄铁矿活性的最佳方案。通过实现科学驱动的骨料选择,可以降低补救过早退化和混凝土退化的成本。因此,社会和经济效益很高,并转化为新的知识和技术,以设计可持续的建筑环境。该项目的成果将确保混凝土建筑物和构筑物的安全、适用性和持续使用,并保护其所有者和居住者的健康和经济生活。混凝土中的磁黄铁矿损坏是磁黄铁矿(集料中丰富的硫化物矿物)在与水分和大气氧气接触时发生有害膨胀的结果,在混凝土中形成膨胀的氢氧化铁和硫酸。后者随后导致二次破坏,包括酸侵蚀、硫酸盐侵蚀和钢筋腐蚀。到目前为止,磁黄铁矿氧化只在酸性矿山废水(低pH值)的背景下进行分析。本研究的创新之处在于对磁黄铁矿在具体环境中的氧化进行了深入的研究。具体地说,将量化pH、温度、相对湿度和氧气水平对混凝土中反应和损伤演化的大小和速度的影响。将进行铁氧化物相的选择性溶解,并进行地球化学计算,以计算磁黄铁矿反应性引起的体积变化。将建立综合的氧气传输和热力学模型,以快速可靠地评估和预测损害。虽然这种变革性的方法是为与磁黄铁矿相关的退化而开发的,但它将适用于大量混凝土聚集体诱导的损害。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the performance-based approaches to evaluate the oxidation potential of iron sulfide-bearing aggregates in concrete
基于性能的方法评估混凝土中含硫化铁骨料的氧化电位
  • DOI:
    10.1016/j.cement.2023.100059
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Zhanzhao;Kaladharan, Gopakumar;Bentivegna, Anthony;Radlińska, Aleksandra
  • 通讯作者:
    Radlińska, Aleksandra
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandra Radlinska其他文献

Aleksandra Radlinska的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandra Radlinska', 18)}}的其他基金

Mechanisms and Mitigation of Shrinkage and Carbonation in Alkali-Activated Concrete
碱激活混凝土收缩和碳化的机理及缓解措施
  • 批准号:
    1265789
  • 财政年份:
    2013
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Standard Grant

相似国自然基金

激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
  • 批准号:
    11104247
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
  • 批准号:
    2304861
  • 财政年份:
    2023
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314719
  • 财政年份:
    2023
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Standard Grant
Analysis of the mechanism of pancreatic cancer metastasis targeting the kinetics of C4orf47 expression by reoxygenation
复氧作用下C4orf47表达动力学分析胰腺癌转移机制
  • 批准号:
    23K08132
  • 财政年份:
    2023
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314720
  • 财政年份:
    2023
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
  • 批准号:
    2304860
  • 财政年份:
    2023
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Continuing Grant
An investigation of the kinetics and mechanism of Cu(II)-catalyzed and ligandless CuAAC reactions
Cu(II) 催化和无配体 CuAAC 反应的动力学和机理研究
  • 批准号:
    2745682
  • 财政年份:
    2022
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Studentship
CAS-Climate: Electroadsorption Kinetics on Transition Metals: Measurement and Mechanism
CAS-Climate:过渡金属的电吸附动力学:测量和机理
  • 批准号:
    2155157
  • 财政年份:
    2022
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Standard Grant
Kinetics and mechanism of silicon-saccharide complexation in aqueous solution
水溶液中硅糖络合动力学及机理
  • 批准号:
    573360-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 32.47万
  • 项目类别:
    University Undergraduate Student Research Awards
The Kinetics and Mechanism of the Halogen Initiated Oxidation of Gas Phase Elemental Mercury and its Role in Atmospheric and Combustion Chemistry.
卤素引发气相元素汞氧化的动力学和机理及其在大气和燃烧化学中的作用。
  • 批准号:
    2003976
  • 财政年份:
    2020
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Continuing Grant
Kinetics, Mechanism, and Active Site Requirements for Hydrodeoxygenation over Reducible Metal Oxides
可还原金属氧化物加氢脱氧的动力学、机理和活性位点要求
  • 批准号:
    1916133
  • 财政年份:
    2019
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了