Collaborative Research: Accurate Prediction of Phase Stability for Chemistry and Process Design of Ni-based Superalloys
合作研究:准确预测镍基高温合金化学和工艺设计的相稳定性
基本信息
- 批准号:1825560
- 负责人:
- 金额:$ 24.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nickel-based superalloys have a number of critical applications relevant to the US economy and national defense, including commercial and military jet engines, gas turbines, and power generators. These materials can operate at relatively high temperatures, but often are limited in their application by their poor performance at the highest operating temperatures. In order to design superalloys that can withstand ever increasing temperatures, it is necessary first to understand what happens at the microscopic level in these alloys. This award supports fundamental research to understand the microscopic processes that control superalloy behavior at high temperatures, and the development of robust computational tools to predict this behavior and design high-performance materials. The approach takes advantage of a unique high-throughput approach to experimental characterization, coupled with a data-driven computational approach to enable the calculation of phase stability in these superalloys. This project will educate next-generation materials scientists and engineers with strong materials processing expertise and both computational and experimental skills to better serve the U.S. manufacturing industry.The overall objective of this research is to establish a new paradigm for reliable and effective assessments of the thermodynamic stability of intermetallic phases during process. This objective will be achieved by: 1) performing high-throughput first-principles calculations of sublattice stabilities and atomic interaction energetics in individual sublattices of the complex topological close-packed (TCP) phases with multiple sublattices (Wyckoff sites) that cannot be directly measured experimentally; 2) exploring innovative and systematic strategies to enable facile incorporation of first-principles results into calculation of phase diagrams ; 3) making high-throughput diffusion multiples to obtain reliable phase diagrams of ternary systems critical to TCP phase stability evaluation, and employing the data to optimize the Gibbs energy parameters of the phases; and 4) expanding the infrastructure capabilities to seamlessly use both first-principles calculation results and experimental data to perform high-throughput phase diagram calculations, including uncertainty quantifications. In addition to establishing a new paradigm in phase diagram modeling, the outcomes of this study include valuable phase diagrams of important ternary systems obtained from diffusion multiples, and a set of reliable Gibbs energy functions for the TCP phases modeled from both experimental phase diagrams and density functional theory (DFT) predictions that can be incorporated into thermodynamic databases for Ni-based superalloys.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
镍基高温合金具有许多与美国经济和国防相关的关键应用,包括商用和军用喷气发动机、燃气轮机和发电机。这些材料可以在相对高的温度下操作,但是通常由于它们在最高操作温度下的不良性能而限制了它们的应用。为了设计出能够承受不断升高的温度的高温合金,首先有必要了解这些合金在微观水平上发生了什么。该奖项支持基础研究,以了解控制高温合金行为的微观过程,以及开发强大的计算工具来预测这种行为和设计高性能材料。该方法利用独特的高通量方法进行实验表征,再加上数据驱动的计算方法,可以计算这些高温合金的相稳定性。该项目将培养下一代材料科学家和工程师,他们具有强大的材料加工专业知识以及计算和实验技能,以更好地为美国制造业服务。本研究的总体目标是建立一个新的范式,用于可靠有效地评估过程中金属间相的热力学稳定性。这一目标将通过以下方法实现:1)对具有多个子晶格的复杂拓扑密堆积(TCP)相的单个子晶格中的子晶格稳定性和原子相互作用能量进行高通量的第一性原理计算(维科夫位点)不能通过实验直接测量; 2)探索创新的和系统的策略,使第一原理结果能够容易地结合到相图的计算中; 3)进行高通量扩散倍数以获得对TCP相稳定性评估至关重要的三元体系的可靠相图,并采用该数据来优化相的吉布斯能参数;以及4)扩展基础设施能力以无缝地使用第一原理计算结果和实验数据来执行高通量相图计算,包括不确定性量化。除了建立一个新的模式,在相图建模,这项研究的成果包括有价值的相图的重要三元系统获得的扩散倍数,以及一组可靠的TCP相的吉布斯能函数,其从实验相图和密度泛函理论(DFT)预测两者建模,可以并入Ni的热力学数据库中。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiscale Entropy and Its Implications to Critical Phenomena, Emergent Behaviors, and Information
- DOI:10.1007/s11669-019-00736-w
- 发表时间:2019-06
- 期刊:
- 影响因子:1.4
- 作者:Zi-kui Liu;Bing Li;Henry Lin
- 通讯作者:Zi-kui Liu;Bing Li;Henry Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji-Cheng Zhao其他文献
Celebrating the 80th Birthday of Professor Zhanpeng Jin
- DOI:
10.1007/s11669-018-0678-4 - 发表时间:
2018-08-31 - 期刊:
- 影响因子:1.700
- 作者:
Ji-Cheng Zhao;Yong Du;Qing Chen - 通讯作者:
Qing Chen
A Technique for the Quantitative Characterization of Weld Microstructure and Application to Mo Welds
- DOI:
10.1007/s11663-023-02771-y - 发表时间:
2023-03-31 - 期刊:
- 影响因子:3.100
- 作者:
Noah M. Kohlhorst;Kevin M. Faraone;Roger G. Miller;Govindarajan Muralidharan;George B. Ulrich;Ji-Cheng Zhao - 通讯作者:
Ji-Cheng Zhao
Continuous cooling transformations in steels
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:1.8
- 作者:
Ji-Cheng Zhao - 通讯作者:
Ji-Cheng Zhao
Methods for phase diagram determination
- DOI:
10.1016/b978-0-08-044629-5.x5000-9 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ji-Cheng Zhao - 通讯作者:
Ji-Cheng Zhao
High-throughput experimental tools for the materials genome initiative
- DOI:
10.1007/s11434-014-0120-1 - 发表时间:
2014-01 - 期刊:
- 影响因子:0
- 作者:
Ji-Cheng Zhao - 通讯作者:
Ji-Cheng Zhao
Ji-Cheng Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ji-Cheng Zhao', 18)}}的其他基金
A New Method to Efficiently and Reliably Measure Ternary Diffusion Coefficients
一种高效、可靠测量三元扩散系数的新方法
- 批准号:
1904245 - 财政年份:2019
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
Collaborative Research: Accurate Prediction of Phase Stability for Chemistry and Process Design of Ni-based Superalloys
合作研究:准确预测镍基高温合金化学和工艺设计的相稳定性
- 批准号:
2004979 - 财政年份:2019
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
2017 Physical Metallurgy Gordon Research Conference and Seminar
2017年物理冶金戈登研究会议暨研讨会
- 批准号:
1742171 - 财政年份:2017
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
High-Throughput Measurements for High-Fidelity Thermodynamic Databases
高保真热力学数据库的高通量测量
- 批准号:
0804833 - 财政年份:2008
- 资助金额:
$ 24.96万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309548 - 财政年份:2023
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
Collaborative Research: Time Accurate Fluid-Structure Interactions
合作研究:时间精确的流固耦合
- 批准号:
2208220 - 财政年份:2022
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155096 - 财政年份:2022
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
Collaborative Research: Advances in Quantum Control and Noise Mitigation on A Highly Accurate Testbed
合作研究:高精度测试台上量子控制和噪声抑制的进展
- 批准号:
2210013 - 财政年份:2022
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
Collaborative Research: Time Accurate Fluid-Structure Interactions
合作研究:时间精确的流固耦合
- 批准号:
2208219 - 财政年份:2022
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
Collaborative Research: Advances in Quantum Control and Noise Mitigation on A Highly Accurate Testbed
合作研究:高精度测试台上量子控制和噪声抑制的进展
- 批准号:
2210018 - 财政年份:2022
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155097 - 财政年份:2022
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
2110145 - 财政年份:2021
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant
D3SC: CDS&E: Collaborative Research: Development and application of accurate, transferable and extensible deep neural network potentials for molecules and reactions
D3SC:CDS
- 批准号:
2041108 - 财政年份:2020
- 资助金额:
$ 24.96万 - 项目类别:
Standard Grant














{{item.name}}会员




