Collaborative Research: Accurate Prediction of Phase Stability for Chemistry and Process Design of Ni-based Superalloys

合作研究:准确预测镍基高温合金化学和工艺设计的相稳定性

基本信息

  • 批准号:
    1825560
  • 负责人:
  • 金额:
    $ 24.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Nickel-based superalloys have a number of critical applications relevant to the US economy and national defense, including commercial and military jet engines, gas turbines, and power generators. These materials can operate at relatively high temperatures, but often are limited in their application by their poor performance at the highest operating temperatures. In order to design superalloys that can withstand ever increasing temperatures, it is necessary first to understand what happens at the microscopic level in these alloys. This award supports fundamental research to understand the microscopic processes that control superalloy behavior at high temperatures, and the development of robust computational tools to predict this behavior and design high-performance materials. The approach takes advantage of a unique high-throughput approach to experimental characterization, coupled with a data-driven computational approach to enable the calculation of phase stability in these superalloys. This project will educate next-generation materials scientists and engineers with strong materials processing expertise and both computational and experimental skills to better serve the U.S. manufacturing industry.The overall objective of this research is to establish a new paradigm for reliable and effective assessments of the thermodynamic stability of intermetallic phases during process. This objective will be achieved by: 1) performing high-throughput first-principles calculations of sublattice stabilities and atomic interaction energetics in individual sublattices of the complex topological close-packed (TCP) phases with multiple sublattices (Wyckoff sites) that cannot be directly measured experimentally; 2) exploring innovative and systematic strategies to enable facile incorporation of first-principles results into calculation of phase diagrams ; 3) making high-throughput diffusion multiples to obtain reliable phase diagrams of ternary systems critical to TCP phase stability evaluation, and employing the data to optimize the Gibbs energy parameters of the phases; and 4) expanding the infrastructure capabilities to seamlessly use both first-principles calculation results and experimental data to perform high-throughput phase diagram calculations, including uncertainty quantifications. In addition to establishing a new paradigm in phase diagram modeling, the outcomes of this study include valuable phase diagrams of important ternary systems obtained from diffusion multiples, and a set of reliable Gibbs energy functions for the TCP phases modeled from both experimental phase diagrams and density functional theory (DFT) predictions that can be incorporated into thermodynamic databases for Ni-based superalloys.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于镍的超级合金有许多与美国经济和国防有关的关键应用,包括商用和军用喷气发动机,燃气轮机和发电机。这些材料可以在相对较高的温度下运行,但通常在运行温度最高的性能较差的情况下,其应用限制。为了设计可以承受不断提高温度的超合金,必须首先了解这些合金中显微镜水平上发生的情况。该奖项支持基本研究,以了解控制高温下超合金行为的微观过程,以及开发可靠的计算工具来预测这种行为和设计高性能材料。该方法利用了独特的高通量方法来实验表征,再加上数据驱动的计算方法,以实现这些超合金中相位稳定性的计算。该项目将教育下一代材料和工程师具有强大的材料处理专业知识以及计算和实验技能,以更好地为美国制造业提供服务。这项研究的总体目标是建立一个新的范式,以可靠,有效地评估在过程中金属阶段的热力学稳定性。将通过以下方式实现这一目标:1)在具有多个sublattices(Wyckoff站点)的复杂拓扑封闭式(TCP)相的单个sublattices中,对sublattice稳定性和原子相互作用能量进行高通量的第一原理计算,这些能量无法直接测量实验; 2)探索创新和系统的策略,使其能够使第一原理结果融合到相图的计算中; 3)使高通量扩散倍数获得对TCP相位稳定性评估至关重要的三元系统的可靠相图,并采用数据来优化阶段的Gibbs能量参数; 4)扩展基础设施能力以无缝使用第一原理计算结果和实验数据来执行高通量相图计算,包括不确定性量化。除了在相图建模中建立新的范式外,这项研究的结果还包括从扩散倍数中获得的重要三元系统的有价值的相图,以及一组可靠的吉布斯能量功能,用于从实验相图和密度函数(DFT)预测中均与热的预测相结合的TCP阶段,这些阶段均构成了ni,该预测均构成了ni,该预测均构成了ni的ni,该预测均为ni。法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准来评估的值得支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiscale Entropy and Its Implications to Critical Phenomena, Emergent Behaviors, and Information
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ji-Cheng Zhao其他文献

High-throughput experimental tools for the materials genome initiative
  • DOI:
    10.1007/s11434-014-0120-1
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ji-Cheng Zhao
  • 通讯作者:
    Ji-Cheng Zhao
Desolvation and Dehydrogenation of Solvated Magnesium Salts of Dodecahydrododecaborate: Relationship between Structure and Thermal Decomposition
十二氢十二硼酸溶剂化镁盐的脱溶剂和脱氢:结构与热分解的关系
  • DOI:
    10.1002/chem.201303842
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuenian Chen;Yi-Hsin Liu;Anne-Marie Alex;er;Judith C. Gallucci;Son-Jong Hwang;Hima Kumar Lingam;Zhenguo Huang;Cong Wang;Huizhen Li;Qianyi Zhao;Umit S. Ozkan;Sheldon G. Shore;Ji-Cheng Zhao
  • 通讯作者:
    Ji-Cheng Zhao
On the quantitative characterization of weld microstructures
  • DOI:
    10.1016/j.scriptamat.2020.02.026
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Noah M. Kohlhorst;Govindarajan Muralidharan;Roger G. Miller;Ji-Cheng Zhao
  • 通讯作者:
    Ji-Cheng Zhao
Continuous cooling transformations in steels
Methods for phase diagram determination
  • DOI:
    10.1016/b978-0-08-044629-5.x5000-9
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ji-Cheng Zhao
  • 通讯作者:
    Ji-Cheng Zhao

Ji-Cheng Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ji-Cheng Zhao', 18)}}的其他基金

A New Method to Efficiently and Reliably Measure Ternary Diffusion Coefficients
一种高效、可靠测量三元扩散系数的新方法
  • 批准号:
    1904245
  • 财政年份:
    2019
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate Prediction of Phase Stability for Chemistry and Process Design of Ni-based Superalloys
合作研究:准确预测镍基高温合金化学和工艺设计的相稳定性
  • 批准号:
    2004979
  • 财政年份:
    2019
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
2017 Physical Metallurgy Gordon Research Conference and Seminar
2017年物理冶金戈登研究会议暨研讨会
  • 批准号:
    1742171
  • 财政年份:
    2017
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
High-Throughput Measurements for High-Fidelity Thermodynamic Databases
高保真热力学数据库的高通量测量
  • 批准号:
    0804833
  • 财政年份:
    2008
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant

相似国自然基金

非球形粒子对气溶胶微物理特性反演与辐射效应评估准确性的影响研究
  • 批准号:
    42305082
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于特征基函数的准确高效电磁散射积分方程方法研究
  • 批准号:
    62371228
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
萤石矿LA-ICP-MS准确微区分析方法研究及其在江西怀玉山-北武夷山地区萤石矿地球化学特征研究中的应用
  • 批准号:
    42363002
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向公平性与准确性统一的推荐方法研究:基于模型偏差消解视角
  • 批准号:
    72301239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
通算协同的高准确、快收敛无线分布式学习优化研究
  • 批准号:
    62301222
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Time Accurate Fluid-Structure Interactions
合作研究:时间精确的流固耦合
  • 批准号:
    2208220
  • 财政年份:
    2022
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155096
  • 财政年份:
    2022
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Advances in Quantum Control and Noise Mitigation on A Highly Accurate Testbed
合作研究:高精度测试台上量子控制和噪声抑制的进展
  • 批准号:
    2210013
  • 财政年份:
    2022
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了