QRM: Understanding the Mechanical Design of Natural Cellular Materials via a Multiscale Quantitative Structural Representation

QRM:通过多尺度定量结构表示理解天然细胞材料的机械设计

基本信息

项目摘要

Many biological materials systems, such as wood, bones, sponges, and sea urchins, utilize cellular structures for simultaneous mechanical function and weight saving. Similarly, engineering cellular solids with lightweight design and mechanical efficiency, have become increasingly favored for applications in energy, infrastructure, aerospace, biomedical, and the automotive vehicle industries. While many engineering cellular materials are manufactured to have either completely stochastic or periodic lattices, natural cellular materials often exhibit complex three-dimensional cellular designs with controlled structural morphologies at multiple length scales. This is believed to contribute to their remarkable mechanical robustness, especially considering their mechanically weak or soft constituents. This award will support a fundamental study to elucidate the multi-scale structural basis of the high-performance natural cellular materials, through an integrated multi-disciplinary effort involving materials science and engineering, mechanical engineering, computer vision, and data science. The insights gained from natural cellular materials will provide important guidance in the design and manufacturing of engineering cellular materials, deepen our understanding of structural cellular solids, and provide insights for the design and fabrication of advanced lightweight materials and structures, with potential benefits to US Manufacturing and Infrastructure sectors.This work will establish a quantitative, comprehensive, and efficient structural representation scheme for the multi-scale cellular network of highly porous structures found in natural systems. The researchers will study the bioceramic cellular structure of sea urchin spines as a testbed system, and multiscale structural representations will elucidate fundamental understanding of their remarkable mechanical robustness and damage tolerance. The work will address the challenges of representing complex, hierarchical cellular structures via three major innovations, including high-resolution tomography imaging and adaptive compressive data processing, multi-scale representation of the cellular structure (individual strut and node level, local unit-cell level, and global cellular network level), and in-silico "regrowth" of bio-inspired cellular structures with morphological control at multiple length scales. The research team will further validate the multi-level cellular structural representation through systematic finite element simulations coupled with synchrotron imaging-based in-situ mechanical testing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多生物材料系统,如木材、骨骼、海绵和海胆,利用细胞结构同时实现机械功能和减轻重量。同样,具有轻量化设计和机械效率的工程蜂窝固体在能源、基础设施、航空航天、生物医学和汽车工业中的应用也越来越受欢迎。虽然许多工程蜂窝材料被制造成具有完全随机或周期性的晶格,但天然蜂窝材料通常表现出复杂的三维蜂窝设计,其结构形态在多个长度尺度上可控。这被认为有助于它们非凡的机械坚固性,特别是考虑到它们的机械组成较弱或较软。该奖项将支持一项基础性研究,通过涉及材料科学和工程、机械工程、计算机视觉和数据科学的综合多学科努力,阐明高性能天然蜂窝材料的多尺度结构基础。从天然细胞材料中获得的见解将为工程细胞材料的设计和制造提供重要指导,加深我们对结构细胞固体的理解,并为先进的轻质材料和结构的设计和制造提供见解,这将为美国制造业和基础设施部门带来潜在的好处。这项工作将为自然系统中发现的高度多孔结构的多尺度细胞网络建立一个定量、全面和高效的结构表示方案。研究人员将研究海胆脊椎的生物陶瓷细胞结构作为试验台系统,多尺度结构表示将阐明对其非凡的机械稳健性和损伤耐受性的基本理解。这项工作将通过三项主要创新来解决表示复杂的、分层的细胞结构的挑战,包括高分辨率断层成像和自适应压缩数据处理、细胞结构的多尺度表示(单个支柱和节点级、局部单元细胞级和全球蜂窝网络级),以及在多个长度尺度上通过形态控制来实现生物启发的细胞结构的电子“再生”。研究团队将通过系统的有限元模拟和基于同步辐射成像的现场力学测试来进一步验证多层次细胞结构表示。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tracing plastic deformation path and concurrent grain refinement during additive friction stir deposition
在添加剂搅拌摩擦沉积过程中追踪塑性变形路径和并发晶粒细化
  • DOI:
    10.1016/j.mtla.2021.101159
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Perry, Mackenzie E.J.;Rauch, Hunter A.;Griffiths, R. Joey;Garcia, David;Sietins, Jennifer M.;Zhu, Yunhui;Zhu, Yuntian;Yu, Hang Z.
  • 通讯作者:
    Yu, Hang Z.
Unraveling pore evolution in post-processing of binder jetting materials: X-ray computed tomography, computer vision, and machine learning
  • DOI:
    10.1016/j.addma.2020.101183
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Yunhui Zhu;Ziling Wu;W. Douglas Hartley;J. Sietins;Christopher B. Williams;Hang Z. Yu
  • 通讯作者:
    Yunhui Zhu;Ziling Wu;W. Douglas Hartley;J. Sietins;Christopher B. Williams;Hang Z. Yu
Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (II): Large-volume structural analysis
  • DOI:
    10.1016/j.actbio.2020.03.006
  • 发表时间:
    2020-04-15
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Chen, Hongshun;Yang, Ting;Li, Ling
  • 通讯作者:
    Li, Ling
Automatic Crack Detection and Analysis for Biological Cellular Materials in X-Ray In Situ Tomography Measurements
  • DOI:
    10.1007/s40192-019-00162-3
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ziling Wu;Ting Yang;Zhifei Deng;Baokun Huang;Han Liu;Yu Wang;Yuan Chen;M. Stoddard;Ling Li;Yunhui Zhu
  • 通讯作者:
    Ziling Wu;Ting Yang;Zhifei Deng;Baokun Huang;Han Liu;Yu Wang;Yuan Chen;M. Stoddard;Ling Li;Yunhui Zhu
Quantitative microstructure analysis for solid-state metal additive manufacturing via deep learning
  • DOI:
    10.1557/jmr.2020.120
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yi Han;R. J. Griffiths;Hang Z. Yu;Yunhui Zhu
  • 通讯作者:
    Yi Han;R. J. Griffiths;Hang Z. Yu;Yunhui Zhu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ling Li其他文献

Development of a reliable method for Agrobacterium tumefaciens-mediated transformation of mulberry callus
建立根癌农杆菌介导的桑愈伤组织转化的可靠方法
  • DOI:
    10.11416/kontyushigen1930.69.345
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Nozue;W. Cai;Ling Li;Wenxin Xu;H. Shioiri;M. Kojima;H. Saito
  • 通讯作者:
    H. Saito
Thermoresponsive MXene composite system with high adsorption capacity for quick and simple removal of toxic metal ions from aqueous environment
具有高吸附能力的热响应 MXene 复合系统,可快速、简单地去除水环境中的有毒金属离子
  • DOI:
    10.1016/j.jhazmat.2022.129740
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Chang Peng;Xuezhi Li;Peicheng Jiang;Wei Peng;Jianfeng Tang;Ling Li;Lei Ye;Shuaijun Pan;Shu Chen
  • 通讯作者:
    Shu Chen
Neural bases of Chinese-English switching: an ERP study
汉英转换的神经基础:ERP 研究
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenlan Jin;Jinxiang Zhang;Ling Li
  • 通讯作者:
    Ling Li
Bromate formation in bromide-containing water through the cobalt-mediated activation of peroxymonosulfate
通过钴介导的过一硫酸盐活化在含溴化物水中形成溴酸盐
  • DOI:
    10.1016/j.watres.2015.06.019
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Li Zhaobing;Chen Zhi;Xiang Yingying;Ling Li;Fang Jingyun;Shang Chii;Dionysiou D. Dionysios
  • 通讯作者:
    Dionysiou D. Dionysios
EDTA-assisted hydrothermal synthesis, characterization, and luminescent properties of YPO4·nH2O:Eu3+ (n = 0, 0.8) microflakes and microbundles
EDTA 辅助水热合成 YPO4·nH2O:Eu3 (n = 0, 0.8) 微米薄片和微束的表征和发光性能

Ling Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ling Li', 18)}}的其他基金

CAREER: De novo emergence of novel regulatory mechanisms that determine carbon and nitrogen resource allocations in plants
职业生涯:决定植物碳氮资源分配的新型调控机制从头出现
  • 批准号:
    2238942
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Continuing Grant
CAREER: Biomineralized architected metamaterials: structural design and formation mechanisms
职业:生物矿化超材料:结构设计和形成机制
  • 批准号:
    1942865
  • 财政年份:
    2020
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Continuing Grant
Investigating the Effectiveness of Pair Programming for Students with Learning Disabilities
调查结对编程对有学习障碍的学生的有效性
  • 批准号:
    1712251
  • 财政年份:
    2017
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Dynamic Mechanical Adaptations of Bone Tissue at Small Length Scales
职业:了解小长度尺度下骨组织的动态机械适应
  • 批准号:
    2339836
  • 财政年份:
    2024
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Standard Grant
An integrated understanding of tectonics based on mechanical properties exploration of the island-arc crust
基于岛弧地壳力学性质探测的构造综合认识
  • 批准号:
    23H01270
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding the Role of Mechanical Boundary Conditions on Tissue Assembly and Repair in 3D Fibrous Microtissues
了解机械边界条件对 3D 纤维微组织中组织组装和修复的作用
  • 批准号:
    2311640
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Standard Grant
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
  • 批准号:
    10606459
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
Integrated understanding of microstructural changes and macroscopic mechanical properties of sandy soil during liquefaction
综合认识砂土液化过程中微观结构变化和宏观力学特性
  • 批准号:
    23K13401
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Earthworms as ploughs and bioreactors: understanding mechanical and biogeochemical impacts for sustainable soils
蚯蚓作为犁和生物反应器:了解可持续土壤的机械和生物地球化学影响
  • 批准号:
    2884067
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Studentship
CAREER: Understanding the Effects of Mechanical Dosing on Mesenchymal Stem Cell Identity
职业:了解机械剂量对间充质干细胞特性的影响
  • 批准号:
    2239922
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Standard Grant
Understanding the effect of hierarchical structure on mechanical properties of wood using a pretreatment technique
使用预处理技术了解分层结构对木材机械性能的影响
  • 批准号:
    23H02272
  • 财政年份:
    2023
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Understanding Bond Formation, Microstructural Development and Mechanical Properties in Cold Spray Additive Manufacturing – A Unified Experimental and Numerical Approach
职业:了解冷喷涂增材制造中的键形成、微观结构发展和机械性能——统一的实验和数值方法
  • 批准号:
    2145326
  • 财政年份:
    2022
  • 资助金额:
    $ 53.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了