RIDIR: Collaborative Research: Integrated Communication Database and Computational Tools
RIDIR:协作研究:集成通信数据库和计算工具
基本信息
- 批准号:1831848
- 负责人:
- 金额:$ 94.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop an integrated research framework for sociotechnical cybersecurity research and broader investigations of information provenance by behavioral, information, and computer scientists. Currently, researchers are mainly limited to natural language processing of large bodies of online text. This project will make it possible to analyze larger information worlds, including those from such countries as China, and the flow of information, including video and audio information, in newspapers, TV, and online sources. The project addresses a core goal of cybersecurity research, which is to understand the provenance, flow, and termination of information warfare, and censorship. The project is aimed at constructing an integrated and unified information database that combines mass communication data from TV and print sources from six locations, with data from two popular online communication platforms. The project will generate a variety of metadata and time series data on topics, actors, events, and sentiments presented in communications by automated multimodal content analysis using text, image, video, and audio. Variables will be linked to identify trajectories of information flow between communication channels through multiple platforms. It will develop a new class of computational models and algorithms that can automatically analyze both verbal and nonverbal communications data by machine learning, computer vision, deep learning, and natural language processing. This project will allow researchers across the computational and social sciences to access the metadata and time series data through a search interface for qualitative research, a statistical package for quantitative research, and various visualization tools. This project will therefore link previously untapped data sources using cutting-edge computational methods to enable scholars to conduct systematic research on large-scale patterns in the emerging information and communication ecosystem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为社会技术网络安全研究以及行为、信息和计算机科学家对信息来源的更广泛调查开发一个综合研究框架。目前,研究人员主要局限于对大量在线文本的自然语言处理。这个项目将使分析更大的信息世界成为可能,包括来自中国等国家的信息世界,以及报纸、电视和网络资源中的信息流动,包括视频和音频信息。该项目解决了网络安全研究的一个核心目标,即了解信息战和审查制度的起源、流动和终止。该项目旨在建立一个综合统一的信息数据库,将来自六个地点的电视和印刷来源的海量通信数据与两个流行的在线通信平台的数据结合起来。该项目将通过使用文本、图像、视频和音频的自动化多模式内容分析,生成关于通信中呈现的主题、参与者、事件和情绪的各种元数据和时间序列数据。将变量联系起来,以确定通过多个平台的沟通渠道之间的信息流轨迹。它将开发一类新的计算模型和算法,可以通过机器学习、计算机视觉、深度学习和自然语言处理来自动分析语言和非语言交流数据。该项目将使计算和社会科学领域的研究人员能够通过定性研究的搜索界面、定量研究的统计资料包和各种可视化工具获取元数据和时间序列数据。因此,该项目将使用尖端计算方法将以前未开发的数据源联系起来,使学者能够对新兴信息和通信生态系统中的大规模模式进行系统研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FairGRAPE: Fairness-aware GRAdient Pruning mEthod for Face Attribute Classification
- DOI:10.48550/arxiv.2207.10888
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Xiao-Ze Lin;Seungbae Kim;Jungseock Joo
- 通讯作者:Xiao-Ze Lin;Seungbae Kim;Jungseock Joo
Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention
- DOI:10.1109/cvpr52688.2022.00815
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Yu Yang;Seung Wook Kim;Jungseock Joo
- 通讯作者:Yu Yang;Seung Wook Kim;Jungseock Joo
Who Blames or Endorses Whom? Entity-to-Entity Directed Sentiment Extraction in News Text
- DOI:10.18653/v1/2021.findings-acl.358
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Kunwoo Park;Zhufeng Pan;Jungseock Joo
- 通讯作者:Kunwoo Park;Zhufeng Pan;Jungseock Joo
How State and Protester Violence Affect Protest Dynamics
- DOI:10.1086/715600
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Zachary C. Steinert-Threlkeld;Alexander Chan;Jungseock Joo
- 通讯作者:Zachary C. Steinert-Threlkeld;Alexander Chan;Jungseock Joo
MMCHIVED: Multimodal Chile and Venezuela Protest Event Data
MMCHIVED:多式联运智利和委内瑞拉抗议事件数据
- DOI:10.1609/icwsm.v16i1.19385
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Steinert-Threlkeld, Zachary;Joo, Jungseock
- 通讯作者:Joo, Jungseock
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jungseock Joo其他文献
Learning Neural Force Manifolds for Sim2Real Robotic Symmetrical Paper Folding
学习 Sim2Real 机器人对称纸张折叠的神经力流形
- DOI:
10.1109/tase.2024.3366909 - 发表时间:
2023 - 期刊:
- 影响因子:5.6
- 作者:
Dezhong Tong;Andrew Choi;Demetri Terzopoulos;Jungseock Joo;M. Jawed - 通讯作者:
M. Jawed
Cross-Domain Classification of Facial Appearance of Leaders
领导者面部容貌跨领域分类
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jeewoo Yoon;Jungseock Joo;Eunil Park;Jinyoung Han - 通讯作者:
Jinyoung Han
Deep Learning of Force Manifolds from the Simulated Physics of Robotic Paper Folding
从机器人折纸模拟物理中深度学习力流形
- DOI:
10.48550/arxiv.2301.01968 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dezhong Tong;Andrew Choi;D. Terzopoulos;Jungseock Joo;M. Jawed - 通讯作者:
M. Jawed
Protest Event Data from Geolocated Social Media Content
来自地理定位社交媒体内容的抗议事件数据
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zachary C. Steinert;Jungseock Joo - 通讯作者:
Jungseock Joo
Mapping Scholarship on Algorithmic Bias: Conceptualization, Empirical Results, and Ethical Concerns
算法偏差学术图谱:概念化、实证结果和伦理问题
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Seungahn Nah;Jun Luo;Jungseock Joo;Communication. Jungseock Joo - 通讯作者:
Communication. Jungseock Joo
Jungseock Joo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
- 批准号:
1926424 - 财政年份:2019
- 资助金额:
$ 94.42万 - 项目类别:
Standard Grant
RIDIR Collaborative Research: Building a Database to Determine Environmental and Familial Effects on Social and Biological Factors
RIDIR 合作研究:建立数据库以确定环境和家庭对社会和生物因素的影响
- 批准号:
1926601 - 财政年份:2019
- 资助金额:
$ 94.42万 - 项目类别:
Standard Grant
RIDIR Collaborative Research: Building a Database to Determine Environmental and Familial Effects on Social and Biological Factors
RIDIR 合作研究:建立数据库以确定环境和家庭对社会和生物因素的影响
- 批准号:
1926481 - 财政年份:2019
- 资助金额:
$ 94.42万 - 项目类别:
Standard Grant
RIDIR Collaborative Research: Building a Database to Determine Environmental and Familial Effects on Social and Biological Factors
RIDIR 合作研究:建立数据库以确定环境和家庭对社会和生物因素的影响
- 批准号:
1926528 - 财政年份:2019
- 资助金额:
$ 94.42万 - 项目类别:
Standard Grant
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
- 批准号:
1926578 - 财政年份:2019
- 资助金额:
$ 94.42万 - 项目类别:
Standard Grant
RIDIR Collaborative Research: Building a Database to Determine Environmental and Familial Effects on Social and Biological Factors
RIDIR 合作研究:建立数据库以确定环境和家庭对社会和生物因素的影响
- 批准号:
1926402 - 财政年份:2019
- 资助金额:
$ 94.42万 - 项目类别:
Standard Grant
RIDIR: Collaborative Research: Data Science Tools for Policy Analyses
RIDIR:协作研究:用于政策分析的数据科学工具
- 批准号:
1831921 - 财政年份:2018
- 资助金额:
$ 94.42万 - 项目类别:
Standard Grant
RIDIR: Collaborative Research: Enabling Access to and Analysis of Shared Daylong Child and Family Audio Data
RIDIR:协作研究:能够访问和分析共享的全天儿童和家庭音频数据
- 批准号:
1827744 - 财政年份:2018
- 资助金额:
$ 94.42万 - 项目类别:
Standard Grant
RIDIR: Collaborative Research: A Data Science Platform and Mechanisms for Its Sustainability
RIDIR:协作研究:数据科学平台及其可持续性机制
- 批准号:
1831551 - 财政年份:2018
- 资助金额:
$ 94.42万 - 项目类别:
Standard Grant
RIDIR: Collaborative Research: Integrated Communication Database and Computational Tools
RIDIR:协作研究:集成通信数据库和计算工具
- 批准号:
1831481 - 财政年份:2018
- 资助金额:
$ 94.42万 - 项目类别:
Standard Grant