Optimizing prediction and understanding of osteoporotic insufficiency fractures using surrogate models, numerical simulation and quantification of local anisotropies by X-ray Vector Radiography

使用替代模型、X 射线矢量放射成像局部各向异性的数值模拟和量化来优化骨质疏松性骨折的预测和理解

基本信息

项目摘要

Osteoporosis is the most frequent systemic skeletal disorder. It is characterized by a reduction of bone mass and deterioration of bone microarchitecture, resulting in an increased susceptibility to fracture. Consecutive vertebral fractures are associated with a massive increase in mortality. To predict fracture risk, currently only bone mineral density (BMD) is assessed in addition to clinical risk factors (e.g. by the FRAX of the WHO); however multiple studies demonstrated a significant improve in assessing biomechanical strength in vitro as well as fracture risk in vivo by using numerical simulations, based on bone macro- and micro-architecture.In this project, we will improve both understanding and prediction of biomechanical properties of osteoporotic bone and consecutive fracture development. To achieve these goals, we will analyze local anisotropy of trabecular and cortical bone using micro-CT and dark field imaging (X-ray Vector Radiography). Dark field imaging is a new modality, complementary to conventional X-ray imaging. It will be optimized for bone imaging and will give insight into the anisotropy of the trabecular network. Material models will be optimized regarding the image quality available in vitro and in vivo. We will simulate bone remodeling using surrogates for different dynamic loading conditions and interactions between osteoclasts, osteoblasts and medications. These results will be integrated in different numerical simulations. Finally, the optimized numerical simulations will be applied to patient data, to improve the prediction of individual fracture risk in the context of clinical risk factors and biomarkers.
骨质疏松症是最常见的全身性骨骼疾病。其特征在于骨量减少和骨微结构恶化,导致骨折易感性增加。压缩性椎体骨折与死亡率的大幅增加有关。为了预测骨折风险,除了临床风险因素外,目前仅评估骨矿物质密度(BMD(例如,通过世界卫生组织的FRAX);然而,多项研究表明,通过使用基于骨骼宏观和微观结构的数值模拟,在体外评估生物力学强度以及体内骨折风险方面有显著改善。在该项目中,我们将提高对骨质疏松骨和连续骨折发展的生物力学特性的理解和预测。为了实现这些目标,我们将使用显微CT和暗场成像(X射线向量射线照相术)分析骨小梁和皮质骨的局部各向异性。暗场成像是一种新的模式,补充传统的X射线成像。它将针对骨成像进行优化,并将深入了解小梁网络的各向异性。将根据体外和体内可用的图像质量对材料模型进行优化。我们将模拟骨重建不同的动态载荷条件和破骨细胞,成骨细胞和药物之间的相互作用的替代品。这些结果将被集成在不同的数值模拟。最后,优化的数值模拟将应用于患者数据,以改善临床风险因素和生物标志物背景下的个体骨折风险预测。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling?
  • DOI:
    10.1007/s00330-017-4904-y
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Mei K;Kopp FK;Bippus R;Köhler T;Schwaiger BJ;Gersing AS;Fehringer A;Sauter A;Münzel D;Pfeiffer F;Rummeny EJ;Kirschke JS;Noël PB;Baum T
  • 通讯作者:
    Baum T
Multi‐level hp‐finite cell method for embedded interface problems with application in biomechanics
嵌入式界面问题的多级 HP 有限元方法及其在生物力学中的应用
Correlation of X-Ray Dark-Field Radiography to Mechanical Sample Properties
  • DOI:
    10.1017/s1431927614001718
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    A. Malecki;E. Eggl;F. Schaff;G. Potdevin;T. Baum;Eduardo Grande Garcia;J. Bauer;F. Pfeiffer
  • 通讯作者:
    A. Malecki;E. Eggl;F. Schaff;G. Potdevin;T. Baum;Eduardo Grande Garcia;J. Bauer;F. Pfeiffer
Parallelization of the multi-level hp-adaptive finite cell method
多级HP自适应有限元方法的并行化
  • DOI:
    10.1016/j.camwa.2017.01.004
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zander;Elhaddad;Özcan;Kollmannsberger;Mundani
  • 通讯作者:
    Mundani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Thomas Baum其他文献

Privatdozent Dr. Thomas Baum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Thomas Baum', 18)}}的其他基金

Individualized assessment of osteoporotic fracture risk at the spine using ultra-low dose MDCT imaging techniques and non-dedicated routine MDCT exams
使用超低剂量 MDCT 成像技术和非专用常规 MDCT 检查对脊柱骨质疏松性骨折风险进行个体化评估
  • 批准号:
    432290010
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
  • 批准号:
    82372016
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
非编码RNA与蛋白质相互作用预测算法的研究
  • 批准号:
    31000586
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Prediction and understanding of thermal transport across successive interfaces
职业:预测和理解连续界面上的热传输
  • 批准号:
    2337749
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Systems Approaches to Understanding the Impact of Cell-Cell Fusion on Therapeutic Resistance
了解细胞间融合对治疗耐药性影响的系统方法
  • 批准号:
    10607123
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the Role of Mesoscale Atmosphere-Ocean Interactions in Seasonal-to-Decadal Climate Prediction
了解中尺度大气-海洋相互作用在季节到十年气候预测中的作用
  • 批准号:
    2231237
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Understanding and Reducing Racial Bias in Cardiovascular Risk Prediction Using Novel AI Methods
使用新型人工智能方法理解和减少心血管风险预测中的种族偏见
  • 批准号:
    MR/Y000803/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
  • 批准号:
    2302969
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
  • 批准号:
    10565985
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the Pathophysiology of Type 2 Diabetes in Navajo Youth
了解纳瓦霍青年 2 型糖尿病的病理生理学
  • 批准号:
    10583405
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Integrating genome, other layers of omics, and non-genetic data to improve understanding of the etiology of human diseases in multi-ethnic populations
整合基因组、组学的其他层面和非遗传数据,以提高对多种族人群中人类疾病病因学的理解
  • 批准号:
    10749846
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the Impact of Post-Separation Abuse on Children's Health and Flourishing Outcomes
了解分居后虐待对儿童健康和成长结果的影响
  • 批准号:
    10605434
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the long-term effects of hurricanes on cardiovascular health and outcomes
了解飓风对心血管健康和结果的长期影响
  • 批准号:
    10591959
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了