From the Nuclear Pore Complex to Smart Artificial Nanochannels
从核孔复合体到智能人工纳米通道
基本信息
- 批准号:1833214
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Human cell stores DNA inside the nucleus. Nuclear pore complexes are large protein complexes on the nuclear envelope, acting like checkpoints for the nuclear import and export. Each nuclear pore complex selects only 0.1 percent of all the protein types and transports them through the nuclear envelope at a rate of around 1000 molecules per second. It is still a mystery how the nuclear pore complex controls the transport of so many different biomolecules with such a high efficiency and selectivity. Understanding this most sophisticated biological nanopore built by nature is expected to inspire the design of next-generation man-made nanopores that will help solve many real-world material problems such as water desalination and energy conversion. The gatekeepers inside the nuclear pore complex are biological polymers (noodle-like molecules) whose structures are highly dynamic and hard to be captured by experiments. In this proposed work the PI will use a theoretical approach to unravel the mystery of the nuclear pore structure. The modeling effort will focus on the functional structure of the gating proteins. Based on a better understanding of the nuclear pore complex, the PI will design smart artificial nanopores functionalized by synthetic polymers to achieve efficient molecular filtering and sensitive response to the environment. The designed nanopores will be computationally optimized and tested by the experimental collaborators on the project. Undergraduate and graduate students will be trained by the PI.One primary feature of the F(phenylalanine)-G(glycine)-Nups is the alternating arrangement of hydrophilic (water-like) and hydrophobic (oil-like) amino acids on their sequences, rendering a complex liquid nano-environment that supports multiple pathways for nuclear transport. It has been heatedly debated whether the amphiphilic phenylalanine-glycine-Nups assume a gel-like or brush-like structure. To address this question, the PI has developed a molecular theory that explicitly accounts for the molecular conformations, electrostatics, hydrophobic interactions, excluded volume effects and acid-base equilibrium at a properly coarse-grained level. Previous work by the PI revealed that the electrostatic and hydrophobic interactions are coupled inside the nuclear pore, leading to a non-additive effect on the nuclear transport. In this research project, the PI will further map the spatial distributions of different hydrophobic functional groups, which will allow for the identification of various nuclear transport pathways. By improving the resolution of the PI?s theoretical microscope, different hypotheses of the nuclear structure can be tested. Using the model developed by the PI, the polymer sequence interaction strength and grafting position can be easily changed to study their effects on the gating performance. The insights from such systematic study will elucidate the design principles for polymer-based synthetic nanopores. The PI will explore the combination of synthetic functional motifs with different stimuli-responses to design nanopores with multiple functions. On the other hand, to take advantage of solid-state materials for artificial nanodevices, the PI will investigate the curvature effect of surface on the self-assembly of grafted/adsorbed polymers. By integrating stimuli-response, sequence-design and curvature-control, the potential of next-generation nanopores inspired and beyond biology will be demonstrated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类细胞将DNA储存在细胞核内。核孔复合物是位于核膜上的大型蛋白质复合物,充当核进出口的检查点。每个核孔复合体只选择所有蛋白质类型的0.1%,并以每秒约1000个分子的速度将它们运输通过核膜。核孔复合体是如何以如此高的效率和选择性控制如此多不同生物分子的转运的,这仍然是一个谜。了解这种由自然界构建的最复杂的生物纳米孔有望激发下一代人造纳米孔的设计,这将有助于解决许多现实世界的材料问题,如水脱盐和能量转换。核孔复合体内部的守门人是生物聚合物(面条状分子),其结构是高度动态的,很难被实验捕获。在这项拟议的工作中,PI将使用理论方法来揭开核孔结构的奥秘。建模工作将集中在门控蛋白的功能结构上。基于对核孔复合体的更好理解,PI将设计由合成聚合物功能化的智能人工纳米孔,以实现高效的分子过滤和对环境的灵敏响应。设计的纳米孔将由该项目的实验合作者进行计算优化和测试。PI将对本科生和研究生进行培训。F(苯丙氨酸)-G(甘氨酸)-Nups的一个主要特征是其序列上亲水性(水状)和疏水性(油状)氨基酸的交替排列,呈现出复杂的液体纳米环境,支持核运输的多种途径。两亲性苯丙氨酸-甘氨酸-Nups是否呈现凝胶状或刷状结构一直存在激烈争论。为了解决这个问题,PI开发了一种分子理论,以适当的粗粒度水平明确地解释了分子构象、静电、疏水性相互作用、排除体积效应和酸碱平衡。PI先前的工作表明,静电和疏水相互作用在核孔内耦合,导致对核转运的非加和效应。在本研究项目中,PI将进一步绘制不同疏水官能团的空间分布,这将允许识别各种核转运途径。通过提高PI的分辨率?在理论显微镜下,可以检验对核结构的不同假设。利用PI开发的模型,可以很容易地改变聚合物序列的相互作用强度和接枝位置,以研究它们对浇口性能的影响。这些系统性的研究将有助于阐明聚合物基合成纳米孔的设计原则。PI将探索具有不同刺激反应的合成功能基序的组合,以设计具有多种功能的纳米孔。另一方面,利用固态材料的人工纳米器件,PI将研究表面的曲率对接枝/吸附聚合物自组装的影响。通过整合刺激-反应、序列-设计和曲率-控制,下一代纳米孔的潜力将得到展示,这一奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Membrane Permittivity on Charge Regulation of Weak Polyelectrolytes End-Tethered in Nanopores
- DOI:10.1021/acs.macromol.2c01391
- 发表时间:2022-09
- 期刊:
- 影响因子:5.5
- 作者:Shiyi Qin;Rikkert J. Nap;Kai Huang;I. Szleifer
- 通讯作者:Shiyi Qin;Rikkert J. Nap;Kai Huang;I. Szleifer
Nanocompartmentalization of the Nuclear Pore Lumen
- DOI:10.1016/j.bpj.2019.11.024
- 发表时间:2020-01-07
- 期刊:
- 影响因子:3.4
- 作者:Huang, Kai;Tagliazucchi, Mario;Szleifer, Igal
- 通讯作者:Szleifer, Igal
Voltage-Triggered Structural Switching of Polyelectrolyte-Modified Nanochannels
- DOI:10.1021/acs.macromol.0c00082
- 发表时间:2020-04-14
- 期刊:
- 影响因子:5.5
- 作者:Perez Sirkin, Yamila A.;Szleifer, Igal;Tagliazucchi, Mario
- 通讯作者:Tagliazucchi, Mario
Design of Multifunctional Nanopore Using Polyampholyte Brush with Composition Gradient
- DOI:10.1021/acsnano.1c05543
- 发表时间:2021-11-23
- 期刊:
- 影响因子:17.1
- 作者:Qin, Shiyi;Huang, Kai;Szleifer, Igal
- 通讯作者:Szleifer, Igal
Transport in nanopores and nanochannels: some fundamental challenges and nature-inspired solutions
- DOI:10.1016/j.mtadv.2019.100047
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Y. A. P. Sirkin;M. Tagliazucchi;I. Szleifer
- 通讯作者:Y. A. P. Sirkin;M. Tagliazucchi;I. Szleifer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igal Szleifer其他文献
A molecular theory of chemically modified electrodes with self-assembled redox polyelectrolye thin films: Reversible cyclic voltammetry
- DOI:
10.1016/j.electacta.2008.01.041 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:
- 作者:
Mario Tagliazucchi;Ernesto J. Calvo;Igal Szleifer - 通讯作者:
Igal Szleifer
Analysis of Interleaflet Domain Registry in Phase-Separated Lipid Bilayers
- DOI:
10.1016/j.bpj.2010.12.2066 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Gregory G. Putzel;Mark J. Uline;Igal Szleifer;Michael Schick - 通讯作者:
Michael Schick
Calculation of Partition Coefficients of Chain Anchors in Liquid-Ordered and Liquid-Disordered Phases in Model Lipid Bilayers
- DOI:
10.1016/j.bpj.2009.12.1543 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Mark Uline;Gabriel Longo;Michael Schick;Igal Szleifer - 通讯作者:
Igal Szleifer
Large-Scale Heteropolymer Model of Chromatin Dynamics and Mechanics
- DOI:
10.1016/j.bpj.2019.11.3011 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Anne Shim;Kai Huang;Vadim Backman;Igal Szleifer - 通讯作者:
Igal Szleifer
DNA Sequence Dependent Affinities for Nucleosome Formation Calculated by Thermodynamic Integration
- DOI:
10.1016/j.bpj.2011.11.2638 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Gregory G. Putzel;Nimesh Jain;Igal Szleifer - 通讯作者:
Igal Szleifer
Igal Szleifer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igal Szleifer', 18)}}的其他基金
Molecular Organization and Transport in Synthetic and Biological Nanopores
合成和生物纳米孔中的分子组织和运输
- 批准号:
1403058 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Molecular basis for protein sorption in polymer-modified chromatographic media
合作研究:聚合物改性色谱介质中蛋白质吸附的分子基础
- 批准号:
1264696 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
US-Poland Workshop: Interfacial Phenomena at the Nanoscale: Fluids and Soft Matter, Poznan, Poland, June 19-23, 2012
美国-波兰研讨会:纳米尺度的界面现象:流体和软物质,波兰波兹南,2012 年 6 月 19-23 日
- 批准号:
1133244 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Control of interfacial behavior through lipid domain formation, ligand-receptor binding and their synergetic effect
通过脂质域形成、配体-受体结合及其协同效应控制界面行为
- 批准号:
0828046 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-EC Cooperative Activity in Computational Materials Research: Multiscale Modeling of Nanostructured Interfaces for Biological Sensors
合作研究: NSF-EC 计算材料研究中的合作活动:生物传感器纳米结构界面的多尺度建模
- 批准号:
0757137 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-EC Cooperative Activity in Computational Materials Research: Multiscale Modeling of Nanostructured Interfaces for Biological Sensors
合作研究: NSF-EC 计算材料研究中的合作活动:生物传感器纳米结构界面的多尺度建模
- 批准号:
0503942 - 财政年份:2005
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Responsive Tethered Polymer Layers: Protein Adsorption, Phase Transition and Interactions
响应性束缚聚合物层:蛋白质吸附、相变和相互作用
- 批准号:
0338377 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Thermodynamic and Kinetic Control of Adsorption in Complex Fluids
复杂流体吸附的热力学和动力学控制
- 批准号:
0001526 - 财政年份:2000
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Career Program: Molecular Design of Surface Modified Vesicles and Liposomes: A Theoretical Study
职业计划:表面修饰囊泡和脂质体的分子设计:理论研究
- 批准号:
9624268 - 财政年份:1996
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似海外基金
In situ imaging of the aging-induced structural and stoichiometric degradation of the nuclear pore complex and nuclear periphery
老化引起的核孔复合体和核外围的结构和化学计量降解的原位成像
- 批准号:
10740706 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Affinity Gradient-Based Transport of HIV Capsid Cores through the Nuclear Pore Complex
基于亲和梯度的 HIV 衣壳核心通过核孔复合体的运输
- 批准号:
10700524 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Caspase-mediated nuclear pore complex trimming in myogenesis and muscular dystrophies
肌生成和肌营养不良中半胱天冬酶介导的核孔复合物修剪
- 批准号:
10591953 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Investigating the Role of Nuclear Pore Complex and Nucleocytoplasmic Transport Alterations in Multiple Sclerosis
研究核孔复合体和核细胞质运输改变在多发性硬化症中的作用
- 批准号:
486103 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Studentship Programs
Investigating Neuronal Nuclear Pore Complex Dysfunction in Models of Neurodegeneration
研究神经变性模型中神经元核孔复合体功能障碍
- 批准号:
574891-2022 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
University Undergraduate Student Research Awards
Modulation of nuclear pore complex structure and function by nuclear envelope tension
核膜张力调节核孔复杂结构和功能
- 批准号:
10388820 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Delineating HIV-1 nuclear import mechanisms through capsid interaction with MxB and the nuclear pore complex
通过衣壳与 MxB 和核孔复合体相互作用描述 HIV-1 核输入机制
- 批准号:
10548633 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
The role of the CCR4-NOT complex in the regulation of Nuclear Pore Complex assembly
CCR4-NOT复合物在核孔复合物组装调节中的作用
- 批准号:
10530225 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Delineating HIV-1 nuclear import mechanisms through capsid interaction with MxB and the nuclear pore complex
通过衣壳与 MxB 和核孔复合体相互作用描述 HIV-1 核输入机制
- 批准号:
10753391 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
The role of the CCR4-NOT complex in the regulation of Nuclear Pore Complex assembly
CCR4-NOT复合物在核孔复合物组装调节中的作用
- 批准号:
10665063 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别: