Collaborative Research: Framework: Software: HDR: Reproducible Visual Analysis of Multivariate Networks with MultiNet
合作研究:框架:软件:HDR:使用 MultiNet 对多元网络进行可重复的视觉分析
基本信息
- 批准号:1835893
- 负责人:
- 金额:$ 12.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multivariate networks -- datasets that link together entities that are associated with multiple different variables -- are a critical data representation for a range of high-impact problems, from understanding how our bodies work to uncovering how social media influences society. These data representations are a rich and complex reflection of the multifaceted relationships that exist in the world. Reasoning about a problem using a multivariate network allows an analyst to ask questions beyond those about explicit connectivity alone: Do groups of social-media influencers have similar backgrounds or experiences? Do species that co-evolve live in similar climates? What patterns of cell-types support different types of brain functions? Questions like these require understanding patterns and trends about entities with respect to both their attributes and their connectivity, leading to inferences about relationships beyond the initial network structure. As data continues to become an increasingly important driver of scientific discovery, datasets of networks have also become increasingly complex. These networks capture information about relationships between entities as well as attributes of the entities and the connections. Tools used in practice today provide very limited support for reasoning about networks and are also limited in the how users can interact with them. This lack of support leaves analysts and scientists to piece together workflows using separate tools, and significant amounts of programming, especially in the data preparation step. This project aims fill this critical gap in the existing cyber-infrastructure ecosystem for reasoning about multivariate networks by developing MultiNet, a robust, flexible, secure, and sustainable open-source visual analysis system. MultiNet aims to change the landscape of visual analysis capabilities for reasoning about and analyzing multivariate networks. The web-based tool, along with an underlying plug-in-based framework, will support three core capabilities: (1) interactive, task-driven visualization of both the connectivity and attributes of networks, (2) reshaping the underlying network structure to bring the network into a shape that is well suited to address analysis questions, and (3) leveraging provenance data to support reproducibility, communication, and integration in computational workflows. These capabilities will allow scientists to ask new classes of questions about network datasets, and lead to insights about a wide range of pressing topics. To meet this goal, we will ground the design of MultiNet in four deeply collaborative case studies with domain scientists in biology, neuroscience, sociology, and geology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多变量网络--将与多个不同变量相关联的实体连接在一起的数据集--是一系列高影响力问题的关键数据表示,从理解我们的身体如何工作到揭示社交媒体如何影响社会。这些数据表示形式丰富而复杂地反映了世界上存在的多方面关系。通过使用多元网络对问题进行推理,分析师可以提出仅限于显式连接的问题:社交媒体影响者群体是否具有相似的背景或经历?共同进化的物种生活在相似的气候中吗?什么样的细胞类型支持不同类型的大脑功能?这类问题需要了解与实体的属性和连接性相关的模式和趋势,从而推断出初始网络结构之外的关系。随着数据继续成为科学发现的日益重要的驱动力,网络的数据集也变得越来越复杂。这些网络捕获关于实体之间的关系以及实体和连接的属性的信息。目前在实践中使用的工具对有关网络的推理提供的支持非常有限,而且用户与其交互的方式也很有限。由于缺乏支持,分析人员和科学家只能使用单独的工具和大量的编程来拼凑工作流程,尤其是在数据准备步骤中。这个项目旨在通过开发一个健壮、灵活、安全和可持续的开源可视化分析系统Multinet来填补现有网络基础设施生态系统中关于多元网络推理的这一关键空白。Multinet的目标是改变用于推理和分析多变量网络的可视化分析能力的格局。基于网络的工具以及基于插件的底层框架将支持三个核心功能:(1)网络连接和属性的交互式、任务驱动的可视化;(2)重塑底层网络结构以使网络形成非常适合解决分析问题的形状;以及(3)利用来源数据支持计算工作流中的重复性、通信和集成。这些能力将允许科学家提出关于网络数据集的新问题,并导致对广泛紧迫主题的洞察。为了实现这一目标,我们将在四个与生物学、神经科学、社会学和地质学领域的科学家深度合作的案例研究中对Multinet的设计进行基础研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luke Harmon其他文献
Mercury: Constant-Round Protocols for Multi-Party Computation with Rationals
Mercury:有理数多方计算的常轮协议
- DOI:
10.1007/978-3-031-49187-0_16 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Luke Harmon;Gaetan Delavignette - 通讯作者:
Gaetan Delavignette
Leveled Homomorphic Encryption Schemes with Hensel Codes
使用 Hensel 码的分级同态加密方案
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
D. Silva;Luke Harmon;Gaetan Delavignette;C. Araujo - 通讯作者:
C. Araujo
Luke Harmon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luke Harmon', 18)}}的其他基金
Collaborative Research: Arbor: Comparative Analysis Workflows for the Tree of Life
合作研究:Arbor:生命之树的比较分析工作流程
- 批准号:
1208912 - 财政年份:2012
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
Collaborative Research: Tempo and Mode of Diversification in Vertebrates
合作研究:脊椎动物多样化的节奏和模式
- 批准号:
0919499 - 财政年份:2009
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342747 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342748 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant