Advanced Polymeric Tissue-Mimicking Materials and Phantoms for Evaluation of Multispectral Photoacoustic Imaging Systems

用于评估多光谱光声成像系统的先进聚合物组织模拟材料和模型

基本信息

  • 批准号:
    1842387
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYUltrasound is a powerful tool to image diseases including cancer, orthopedic disorders, and heart function. One limitation of ultrasound is that it suffers from low contrast between the region of interest versus the background tissue. Therefore, there is a wide body of research into a special kind of ultrasound known as photoacoustic imaging. Photoacoustic imaging uses light to generate sound only in the area of interest. This increases the contrast. Unfortunately, photoacoustic ultrasound is not yet approved for widespread use in people. This might be partially due to a lack of standardization devices and methods to validate the novel imaging equipment that is needed for photoacoustic imaging. Therefore, this proposed work will create specialized plastic objects with known optical and acoustic properties suitable for calibrating and standardizing photoacoustic imaging equipment. This proposal combines expertise from academia and the Food and Drug Administration to create test objects and methods that will be useful to instrument manufacturers and physicians. The resulting test objects will improve knowledge of how to best create photoacoustic imaging instrumentation and might also streamline regulatory approval of this equipment. In turn, this will increase patient access to this important imaging technique to ultimately advance the national health and quality of life. TECHNICAL SUMMARYPhotoacoustic imaging provides deep tissue imaging similar to ultrasound but with enhanced optical contrast and additional functional and molecular imaging capabilities. However, no standardized performance test methods or phantoms exist for photoacoustic imaging system evaluation unlike mature techniques (ultrasound, MRI, CT). The fundamental limitation is a lack of materials to simultaneously simulate tissue properties over a broad range of optical wavelengths and acoustic frequencies. This leaves investigators, instrument manufacturers, and regulatory agencies without clear strategies to evaluate device safety and effectiveness. This proposed work will create stable, biologically relevant imaging phantoms with well-characterized optical absorption/scattering coefficients, acoustic impedance, etc. that broadly simulate tissue over a wide range of optical wavelengths and acoustic frequencies. A literature search and laboratory study will identify suitable materials such as polyacrylamide hydrogels or novel polyvinyl chloride plastisol formulations. Intrinsic properties will be measured using well-validated spectrophotometry and acoustic pulse transmission methods and equipment at FDA. Once the phantom material formulations have been optimized, we will construct phantoms in several specific configurations to evaluate image quality metrics such as spatial resolution, penetration depth, etc. These novel phantoms will then be used with three photoacoustic systems with substantially different operating parameter ranges (e.g. optical wavelengths). Image quality metrics will be compared between devices to elucidate performance trade-offs between systems and the overall impact of system design choices and phantom properties on performance. The goal is to produce phantoms with 6-month stability that spectrally mimic hemoglobin and deoxyhemoglobin and contain targets that enable image quality testing. The outcome will be a well-validated tissue-mimicking phantom to support device developers and inform regulatory decision-making including use as potential FDA Medical Device Development Tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性超声是对癌症、骨科疾病和心脏功能等疾病进行成像的有力工具。超声的一个局限性是,它的感兴趣区域与背景组织之间的对比度较低。因此,人们对一种特殊的超声波--光声成像--进行了广泛的研究。光声成像仅在感兴趣的区域使用光来产生声音。这会增加对比度。不幸的是,光声超声还没有被批准在人体内广泛使用。这可能部分是由于缺乏标准化设备和方法来验证光声成像所需的新型成像设备。因此,这项拟议的工作将创造专门的塑料物体,具有已知的光学和声学特性,适合校准和标准化光声成像设备。这项建议结合了学术界和食品和药物管理局的专业知识,创建了对仪器制造商和医生有用的测试对象和方法。由此产生的测试对象将提高关于如何最好地创建光声成像仪器的知识,并可能简化对该设备的监管批准。反过来,这将增加患者使用这一重要成像技术的机会,最终提高国民健康和生活质量。技术总结光声成像提供类似于超声波的深层组织成像,但具有增强的光学对比度以及额外的功能和分子成像能力。然而,与成熟的技术(超声、核磁共振、CT)不同,目前还没有标准的性能测试方法或模体用于光声成像系统的评估。根本的限制是缺乏材料来同时模拟在广泛的光学波长和声频范围内的组织特性。这使得调查人员、仪器制造商和监管机构没有明确的战略来评估设备的安全性和有效性。这项拟议的工作将创建稳定的、与生物相关的成像模型,具有很好的特征光学吸收/散射系数、声阻抗等,可以在广泛的光学波长和声频率范围内广泛地模拟组织。文献检索和实验室研究将确定合适的材料,如聚丙烯酰胺水凝胶或新型聚氯乙烯增塑溶胶配方。FDA将使用经过充分验证的分光光度和声脉冲传输方法和设备来测量本征特性。一旦模体材料配方得到优化,我们将构建几种特定配置的模体,以评估图像质量指标,如空间分辨率、穿透深度等。然后,这些新型模体将用于三个运行参数范围(例如,光学波长)明显不同的光声系统。图像质量指标将在不同设备之间进行比较,以阐明系统之间的性能权衡,以及系统设计选择和幻影属性对性能的总体影响。目标是制造出具有6个月稳定性的模体,这种模体可以光谱模拟血红蛋白和脱氧血红蛋白,并包含能够进行图像质量测试的靶标。结果将是一个经过充分验证的组织模拟体模,以支持设备开发商并为监管决策提供信息,包括用作潜在的FDA医疗设备开发工具。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jesse Jokerst其他文献

Jesse Jokerst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jesse Jokerst', 18)}}的其他基金

Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
  • 批准号:
    2335597
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Biomaterials built by biology: Mechanism and applications of hyperbranched fractal plasmonic structures
生物学构建的生物材料:超支化分形等离子体结构的机理和应用
  • 批准号:
    2242375
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FDA Scholar Program: Blood-Mimicking Phantoms for Assessing Oximetry Performance of Photoacoustic Imaging Systems
FDA 学者计划:用于评估光声成像系统血氧饱和度性能的模拟血液模型
  • 批准号:
    2149602
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
I-Corps: Development of a Periodontal Ultrasound/Photoacoustic Imaging Device
I-Corps:牙周超声/光声成像设备的开发
  • 批准号:
    2129540
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Morphologically Complex Tissue-Mimicking Phantoms for Evaluating Tissue Scattering Artifacts in Photoacoustic Imaging
NSF/FDA SIR:形态复杂的组织模拟体模,用于评估光声成像中的组织散射伪影
  • 批准号:
    1937674
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Expandable sol-gel nanomaterials as therapeutic tools and imaging agents
职业:可膨胀溶胶-凝胶纳米材料作为治疗工具和成像剂
  • 批准号:
    1845683
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of polyglycerol-based polymeric nanomotor bearing a stimuli-responsive surface for precise theranostics at deep tumor tissue
开发基于聚甘油的聚合物纳米电机,该电机具有刺激响应表面,可用于深部肿瘤组织的精确治疗诊断
  • 批准号:
    23K17213
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Inflammasome-modulating Polymeric Biomaterials to Augment Tissue Repair
炎症小体调节聚合生物材料增强组织修复
  • 批准号:
    10284656
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Inflammasome-modulating Polymeric Biomaterials to Augment Tissue Repair
炎症小体调节聚合生物材料增强组织修复
  • 批准号:
    10487520
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Inflammasome-modulating Polymeric Biomaterials to Augment Tissue Repair
炎症小体调节聚合生物材料增强组织修复
  • 批准号:
    10689295
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Macromolecular-bottlebrush polymeric gels with tissue-mimetic swelling and mechanical properties
具有模拟组织膨胀和机械性能的高分子瓶刷聚合物凝胶
  • 批准号:
    2004048
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
POLYMERIC ELECTRON PARAMAGNETIC RESONANCE PROBES FOR REAL-TIME MONITORING OF TISSUE VASCULARIZATION
用于实时监测组织血管化的聚合物电子顺磁共振探头
  • 批准号:
    9811147
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
Polymeric electron paramagnetic resonance probes for real-time monitoring of tissue vascularization
用于实时监测组织血管化的聚合物电子顺磁共振探针
  • 批准号:
    9182425
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
Synthesis, Characterization, and Evaluation of Polymeric Tissue Lubricants
聚合物组织润滑剂的合成、表征和评估
  • 批准号:
    8886944
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
Synthesis, Characterization, and Evaluation of Polymeric Tissue Lubricants
聚合物组织润滑剂的合成、表征和评估
  • 批准号:
    9303267
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
Synthesis, Characterization, and Evaluation of Polymeric Tissue Lubricants
聚合物组织润滑剂的合成、表征和评估
  • 批准号:
    9096649
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了