EAGER: Exploring Cognitively Plausible Computational Models for Processing Human Language
EAGER:探索处理人类语言的认知合理计算模型
基本信息
- 批准号:1844740
- 负责人:
- 金额:$ 10.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite the recent successes of artificial intelligence techniques designed to process human language, most contemporary solutions are designed to handle very specific language processing tasks. As a result, human-level language understanding is still out of reach for most current computational approaches, especially when retaining new information and reasoning over the accumulated knowledge is involved. This exploratory project advances the goal of developing more cognitively realistic computational models that can mimic some of the known properties of human language processing, and as a result, be more robust and better suited as general systems for language understanding, with human-like learning which involves obtaining and updating knowledge over time.While most contemporary deep learning approaches in natural language processing focus on task-specific end-to-end models, this project prioritizes generalist architectures that would be consistent with the current data on semantic priming, grouping and chunking effects in the formation and use of conceptual systems, and the effects of long- and short-term memory on the storage and retrieval of knowledge. In this project, novel neural network architectures are planned that model a subset of these properties. The processes that enable learning and memory via strengthening of synaptic connections in the brain will be emulated by a set of representational units (r-units) with bidirectional connections, modeling the interaction between small regions of neocortex during information processing. Memory Store Activation State Model represents the connections between r-units in terms of convolutional filters applied to the memory store. The priming effects will be modeled by a pre-activation pattern produced via a sequence of deconvolutional operation. Rate-Based Connectivity Network model combines reinforcement learning on per-node basis with a form of Hebbian learning applied to a time-varying system where each r-unit calculates rate of change of its output, allowing node activations to linger through time; it is trained with a discrete global reward signal. The goal of this project is to establish the feasibility of the proposed architectures by developing the initial proof-of-concept prototypes, demonstrating that they are able to converge on simple learning tasks, and applying them to the task of language modeling to ensure that a practically useful representation can be learned.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管最近人工智能技术在处理人类语言方面取得了成功,但大多数当代解决方案都是为了处理非常具体的语言处理任务而设计的。因此,对于大多数当前的计算方法来说,人类水平的语言理解仍然是遥不可及的,特别是当涉及到保留新信息和对积累的知识进行推理时。这个探索性项目推进了开发更多认知现实计算模型的目标,这些模型可以模仿人类语言处理的一些已知属性,因此,更健壮,更适合作为语言理解的一般系统,具有类似人类的学习,包括随着时间的推移获取和更新知识。虽然自然语言处理中大多数当代深度学习方法都侧重于任务特定的端到端模型,但该项目优先考虑的是通才架构,它将与当前关于语义启动、概念系统形成和使用中的分组和分块效应以及长期和短期记忆对知识存储和检索的影响的数据一致。在这个项目中,新的神经网络架构计划对这些属性的子集进行建模。通过加强大脑中的突触连接来实现学习和记忆的过程将由一组具有双向连接的表征单元(r-units)来模拟,模拟信息处理过程中新皮层小区域之间的相互作用。内存存储激活状态模型(Memory Store Activation State Model)以应用于内存存储的卷积滤波器的形式表示r-单元之间的连接。启动效应将通过一系列反卷积操作产生的预激活模式来建模。基于速率的连通性网络模型将基于每个节点的强化学习与应用于时变系统的Hebbian学习形式相结合,其中每个r-unit计算其输出的变化率,允许节点激活随时间而持续;它是用离散的全局奖励信号来训练的。这个项目的目标是通过开发最初的概念验证原型来建立所提出的架构的可行性,证明它们能够收敛于简单的学习任务,并将它们应用于语言建模任务,以确保可以学习到实际有用的表示。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revealing the Dark Secrets of BERT
- DOI:10.18653/v1/d19-1445
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Olga Kovaleva;Alexey Romanov;Anna Rogers;Anna Rumshisky
- 通讯作者:Olga Kovaleva;Alexey Romanov;Anna Rogers;Anna Rumshisky
Life after BERT: What do Other Muppets Understand about Language?
- DOI:10.18653/v1/2022.acl-long.227
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Vladislav Lialin;Kevin Zhao;Namrata Shivagunde;Anna Rumshisky
- 通讯作者:Vladislav Lialin;Kevin Zhao;Namrata Shivagunde;Anna Rumshisky
When BERT Plays the Lottery, All Tickets Are Winning
- DOI:10.18653/v1/2020.emnlp-main.259
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Sai Prasanna;Anna Rogers;Anna Rumshisky
- 通讯作者:Sai Prasanna;Anna Rogers;Anna Rumshisky
BERT Busters: Outlier Dimensions that Disrupt Transformers
- DOI:10.18653/v1/2021.findings-acl.300
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Olga Kovaleva;Saurabh Kulshreshtha;Anna Rogers;Anna Rumshisky
- 通讯作者:Olga Kovaleva;Saurabh Kulshreshtha;Anna Rogers;Anna Rumshisky
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Rumshisky其他文献
Tracking the History of Knowledge Using Historical Editions of Encyclopedia
使用百科全书的历史版本追踪知识的历史
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Britannica M. Gronas;Anna Rumshisky;A. Gabrovski;S. Kovaka;H. Chen - 通讯作者:
H. Chen
Complementary Roles of Inference and Language Models in QA
推理和语言模型在 QA 中的互补作用
- DOI:
10.18653/v1/2023.pandl-1.8 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Eric Brill;Susan Dumais;Tom B. Brown;Benjamin Mann;Nick Ryder;Jared D Subbiah;Prafulla Kaplan;A. Dhariwal;Danqi Chen;Adam Fisch;Jason Weston;J. Devlin;Ming;Kenton Lee;Tianyi Li;Mohammad Javad Hosseini;Sabine Weber;Mark Steedman. 2022a;Language Models;Are;Xi Victoria;Todor Lin;Mikel Mihaylov;Artetxe;Tianlu;Shuohui Wang;Daniel Chen;Myle Simig;Na;Yinhan Liu;Myle Ott;Naman Goyal;Jingfei Du;Mandar Joshi;Omer Levy;Mike Lewis;Nick McKenna;Liane Guillou;Mohammad Javad;Sander Bijl de Vroe;Mark Johnson;Yu Meng;Anna Rumshisky;Alexey Ro;Dan Moldovan;S. Harabagiu;Marius Pasca;Rada;Roxana Mihalcea;Richard Girju;Goodrum;Dat Ba Nguyen;Johannes Hoffart;Martin Theobald - 通讯作者:
Martin Theobald
Adversarial Text Generation Without Reinforcement Learning
无需强化学习的对抗性文本生成
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
David Donahue;Anna Rumshisky - 通讯作者:
Anna Rumshisky
GLML: Annotating Argument Selection and Coercion
GLML:注释参数选择和强制
- DOI:
10.3115/1693756.1693774 - 发表时间:
2009 - 期刊:
- 影响因子:1.5
- 作者:
J. Pustejovsky;Jessica L. Moszkowicz;O. Batiukova;Anna Rumshisky - 通讯作者:
Anna Rumshisky
Anna Rumshisky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Rumshisky', 18)}}的其他基金
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226601 - 财政年份:2023
- 资助金额:
$ 10.99万 - 项目类别:
Standard Grant
Student Participant Support for Conversational Intelligence Summer School 2019
2019 年对话智能暑期学校学生参与者支持
- 批准号:
1933903 - 财政年份:2019
- 资助金额:
$ 10.99万 - 项目类别:
Standard Grant
CAREER: Developing an Underspecified Representation for Temporal Information in Text
职业:开发文本中时间信息的未指定表示
- 批准号:
1652742 - 财政年份:2017
- 资助金额:
$ 10.99万 - 项目类别:
Continuing Grant
相似国自然基金
Exploring Changing Fertility Intentions in China
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
EMPOWHPVR: Exploring the factors that impact HPV self-sampling uptake amongst Black women and people with a cervix in Peel region, Ontario
EMPOWHPVR:探讨影响安大略省皮尔地区黑人女性和宫颈癌患者 HPV 自我采样率的因素
- 批准号:
502585 - 财政年份:2024
- 资助金额:
$ 10.99万 - 项目类别:
Exploring volcanic arcs as factories of critical minerals
探索火山弧作为关键矿物工厂
- 批准号:
FT230100230 - 财政年份:2024
- 资助金额:
$ 10.99万 - 项目类别:
ARC Future Fellowships
Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
- 批准号:
ES/Y00860X/1 - 财政年份:2024
- 资助金额:
$ 10.99万 - 项目类别:
Fellowship
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
- 批准号:
ES/Z502431/1 - 财政年份:2024
- 资助金额:
$ 10.99万 - 项目类别:
Fellowship
Exploring factors affecting the disability pay gap
探讨影响伤残工资差距的因素
- 批准号:
ES/Z50242X/1 - 财政年份:2024
- 资助金额:
$ 10.99万 - 项目类别:
Fellowship
Women's mental illness in pregnancy: Exploring contact with secondary mental health services and links with offspring health and education outcomes
妇女妊娠期精神疾病:探索与二级心理健康服务的联系以及与后代健康和教育成果的联系
- 批准号:
ES/Z502492/1 - 财政年份:2024
- 资助金额:
$ 10.99万 - 项目类别:
Fellowship
A2M: Exploring in-silico predicted arms-races at the plant-pathogen interface
A2M:探索植物-病原体界面的计算机预测军备竞赛
- 批准号:
BB/Y000560/1 - 财政年份:2024
- 资助金额:
$ 10.99万 - 项目类别:
Research Grant
Winds of Change: Exploring the Meteorological Drivers of Global Dust
变革之风:探索全球沙尘的气象驱动因素
- 批准号:
2333139 - 财政年份:2024
- 资助金额:
$ 10.99万 - 项目类别:
Standard Grant
Planning: FIRE-PLAN: Exploring fire as medicine to revitalize cultural burning in the Upper Midwest
规划:FIRE-PLAN:探索火作为药物,以振兴中西部北部的文化燃烧
- 批准号:
2349282 - 财政年份:2024
- 资助金额:
$ 10.99万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
- 批准号:
2401066 - 财政年份:2024
- 资助金额:
$ 10.99万 - 项目类别:
Standard Grant