CAREER: Reinforcement Learning of the Free Energy Landscapes of Proteins
职业:蛋白质自由能景观的强化学习
基本信息
- 批准号:1845606
- 负责人:
- 金额:$ 69.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proteins are molecular machines that perform a variety of tasks in living organisms, such as transporting nutrients and communicating signals within and between cells. Some of these proteins undergo a change in their conformation or shape to carry out these functions. It is challenging to visualize the different shapes of these molecular machines using traditional experimental techniques, such as X-ray crystallography. Therefore, the molecular level understanding of these processes and its implications for protein function remains elusive. This lack of molecular information makes it difficult to develop engineering approaches to regulate protein function. Molecular Dynamics simulations provide a way to observe these movements at the atomic scale. However, significant amount of computer time is required to observe long timescale conformational change processes in proteins. The objectives of this project are (1) to develop efficient algorithms based on machine learning techniques to understand how proteins undergo conformational change and (2) to apply these algorithms to understand the role of protein dynamics in transport of molecules across the cell membrane via membrane transporters. The specific transporters investigated in this project play a critical role in determining crop productivity and neurological disorders in humans. In concert with these research objectives, the PI will develop outreach activities teaching high school girls about computational methods used to investigate protein function via Girl's Adventure in Mathematics, Engineering and Sciences summer camp at the University of Illinois. PI also plans to engage African-American boys at local Urbana-Champaign schools via a three-day after-school program to teach them about protein structure and function.This project will develop computational methods that can efficiently explore the free energy landscapes associated with protein conformational changes. This work is guided by the hypothesis that leveraging ideas from reinforcement learning technique and using evolutionary coupled residue pair distances as order parameters for protein functional dynamics will allow efficient sampling of free energy landscapes. The development of the algorithm called "Reinforcement Learning-Based Adaptive Sampling" (REAP) has been initiated. Preliminary results have shown promising application of these ideas to several proteins. The fully developed algorithm would be particularly useful for systems with limited structural information, as order parameters can be identified using evolutionary coupled residues based on sequence information alone. The specific goals of this project include: (1) further develop the REAP methodology to efficiently explore the free energy landscapes associated with protein function, (2) test the new methodology to understand molecular processes of high biological importance but with limited availability of structural information. In particular, molecular mechanisms of substrate transport and its regulation for the following transport processes will be investigated: (1) Nitrate transport process via root-associated transporters in plants with applications in increasing the crop yields. (2) Serotonin transport in brain via human Serotonin transporter for elucidating molecular origin of neurological disorders. (3) Sugar transport via SWEET family transporter in Rice with applications in enhancing plant growth. Despite differences in their function and structures, these systems share similarities in terms of their modes of regulation that could allow for a comprehensive understanding of the regulatory mechanisms in membrane transporters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蛋白质是在生物体中执行各种任务的分子机器,例如在细胞内和细胞间运输营养物质和传递信号。这些蛋白质中的一些经历了它们的构象或形状的改变来执行这些功能。使用传统的实验技术,如x射线晶体学,可视化这些分子机器的不同形状是具有挑战性的。因此,对这些过程的分子水平理解及其对蛋白质功能的影响仍然难以捉摸。分子信息的缺乏使得开发调节蛋白质功能的工程方法变得困难。分子动力学模拟提供了一种在原子尺度上观察这些运动的方法。然而,要观察蛋白质长时间的构象变化过程,需要大量的计算机时间。该项目的目标是:(1)开发基于机器学习技术的高效算法,以了解蛋白质如何经历构象变化;(2)应用这些算法来了解蛋白质动力学在分子通过膜转运体跨细胞膜运输中的作用。该项目中研究的特定转运蛋白在决定作物生产力和人类神经系统疾病中发挥关键作用。为了配合这些研究目标,PI将在伊利诺伊大学开展拓展活动,通过“女孩在数学、工程和科学中的冒险”夏令营,向高中女生传授用于研究蛋白质功能的计算方法。PI还计划通过一个为期三天的课后项目,让当地厄巴纳-香槟学校的非裔美国男孩参与进来,教授他们蛋白质的结构和功能。该项目将开发计算方法,可以有效地探索与蛋白质构象变化相关的自由能景观。这项工作的指导假设是,利用强化学习技术的思想,并使用进化耦合残基对距离作为蛋白质功能动力学的阶参数,将允许对自由能景观进行有效采样。一种名为“基于强化学习的自适应采样”(REAP)的算法已经开始发展。初步结果表明,这些想法有希望应用于几种蛋白质。完整开发的算法对于结构信息有限的系统特别有用,因为顺序参数可以单独使用基于序列信息的进化耦合残基来识别。该项目的具体目标包括:(1)进一步发展REAP方法,以有效探索与蛋白质功能相关的自由能景观;(2)测试新方法,以了解具有高生物学重要性但结构信息可用性有限的分子过程。主要研究底物转运的分子机制及其对以下转运过程的调控:(1)植物中硝酸盐通过根相关转运体的转运过程,在作物增产中的应用。(2) 5 -羟色胺在脑内的转运:通过人5 -羟色胺转运体阐明神经系统疾病的分子起源。(3)水稻SWEET家族转运蛋白转运糖及其在促进植株生长中的应用。尽管它们的功能和结构不同,但这些系统在调节模式方面有相似之处,这可以让我们全面了解膜转运体的调节机制。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atomistic Insights Into The Mechanism of Dual Affinity Switching In Plant Nitrate Transporter NRT1.1
- DOI:10.1101/2022.10.17.512638
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Balaji Selvam;Jiangyan Feng;D. Shukla
- 通讯作者:Balaji Selvam;Jiangyan Feng;D. Shukla
Impact of Increased Membrane Realism on Conformational Sampling of Proteins
增加膜真实性对蛋白质构象采样的影响
- DOI:10.1021/acs.jctc.1c00276
- 发表时间:2021
- 期刊:
- 影响因子:5.5
- 作者:Weigle, Austin T.;Carr, Matthew;Shukla, Diwakar
- 通讯作者:Shukla, Diwakar
The substrate import mechanism of the human serotonin transporter
- DOI:10.1016/j.bpj.2022.01.024
- 发表时间:2022-03-01
- 期刊:
- 影响因子:3.4
- 作者:Chan,Matthew C.;Selvam,Balaji;Shukla,Diwakar
- 通讯作者:Shukla,Diwakar
The Effects of N-Linked Glycosylation on SLC6 Transporters
- DOI:10.1021/acs.jcim.2c00940
- 发表时间:2023-04-07
- 期刊:
- 影响因子:5.6
- 作者:Chan, Matthew C.;Shukla, Diwakar
- 通讯作者:Shukla, Diwakar
FingerprintContacts: Predicting Alternative Conformations of Proteins from Coevolution
- DOI:10.1021/acs.jpcb.9b11869
- 发表时间:2020-05-07
- 期刊:
- 影响因子:3.3
- 作者:Feng, Jiangyan;Shukla, Diwakar
- 通讯作者:Shukla, Diwakar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diwakar Shukla其他文献
Reconciling Membrane Protein Simulations with Experimental Spectroscopic Data
- DOI:
10.1016/j.bpj.2019.11.1367 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Shriyaa Mittal;Diwakar Shukla - 通讯作者:
Diwakar Shukla
How do lasso peptides fold?
- DOI:
10.1016/j.bpj.2023.11.3306 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Xuenan Mi;Diwakar Shukla - 通讯作者:
Diwakar Shukla
Mechanistic Origin of Partial Agonism of Δ<sup>9</sup>-Tetrahydrocannabinol for Cannabinoid Receptors
- DOI:
10.1016/j.bpj.2020.11.1000 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Soumajit Dutta;Balaji Selvam;Diwakar Shukla - 通讯作者:
Diwakar Shukla
Substrate prediction for RiPP biosynthetic enzymes emvia/em masked language modeling and transfer learning
通过掩码语言建模和迁移学习对 RiPP 生物合成酶的底物预测
- DOI:
10.1039/d4dd00170b - 发表时间:
2024-12-17 - 期刊:
- 影响因子:5.600
- 作者:
Joseph D. Clark;Xuenan Mi;Douglas A. Mitchell;Diwakar Shukla - 通讯作者:
Diwakar Shukla
Edge Estimation in the Population of a Binary Tree Using Node-Sampling
使用节点采样的二叉树种群中的边缘估计
- DOI:
10.1080/03610926.2012.685552 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Diwakar Shukla;Y. Rajput;N. S. Thakur - 通讯作者:
N. S. Thakur
Diwakar Shukla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
海桑属杂种区强化(Reinforcement)的检验与遗传基础研究
- 批准号:30800060
- 批准年份:2008
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Stochasticity and Resilience in Reinforcement Learning: From Single to Multiple Agents
职业:强化学习中的随机性和弹性:从单个智能体到多个智能体
- 批准号:
2339794 - 财政年份:2024
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
CAREER: Towards Real-world Reinforcement Learning
职业:走向现实世界的强化学习
- 批准号:
2339395 - 财政年份:2024
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
CAREER: Dual Reinforcement Learning: A Unifying Framework with Guarantees
职业:双重强化学习:有保证的统一框架
- 批准号:
2340651 - 财政年份:2024
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
- 批准号:
2237830 - 财政年份:2023
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
CAREER: Foundations of Reinforcement Learning under Partial Observability
职业:部分可观察性下强化学习的基础
- 批准号:
2239297 - 财政年份:2023
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
CAREER: OneSense: One-Rule-for-All Combinatorial Boolean Synthesis via Reinforcement Learning
职业:OneSense:通过强化学习进行一刀切的组合布尔综合
- 批准号:
2349670 - 财政年份:2023
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant