CAREER: Systematic Software Testing for Deep Learning Applications
职业:深度学习应用程序的系统软件测试
基本信息
- 批准号:1845893
- 负责人:
- 金额:$ 53.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A paradigm shift is underway in software development, where decision making is increasingly shifting from hand-coded program logic to a reliance on Deep Learning (DL) --- popular applications of Speech Processing, Image Recognition, Robotics, etc. are using DL to implement their core components. Deep Neural Networks (DNNs), a widely used form of DL, is a key behind much of this progress. With such spectacular growth in traditional applications, DNNs and other DL technologies are also increasingly being used in safety-critical systems such as autonomous cars, medical diagnosis, malware detection, and aircraft collision avoidance systems. Such a wide adoption of DL techniques carries with it concerns about the reliability of these systems, as several high-profile instances of DL-based behavior have already been reported. Thus, it has become crucial to rigorously test these applications with realistic corner cases to ensure high reliability. However, due to the fundamental architectural differences between DL implementations such as DNNs and traditional software, existing software testing techniques do not apply to them in any obvious way. In fact, companies like Google, Tesla, etc. are increasingly confronting software testing challenges to ensure reliable and safe DL applications. Therefore, systematically testing DL-based software systems will be a significant step towards increasing safety and reliability of sensitive and safety-critical DL systems.This project will design, implement, and evaluate a novel software testing framework to assess the reliability of the Deep Learning applications and detect buggy behaviors during the application development and maintenance phase. In particular, the proposed framework will develop novel white-box testing strategies, realistic test-case generation techniques, and regression testing techniques to assess DL applications. A unique characteristic of the DL-based programming paradigm is that the end applications highly depend on the training data. Therefore, the research will build novel white-box testing strategies to evaluate both the model and the training data together as a whole system. In addition, this research will design and deploy techniques to generate new test cases that capture the real-world corner-case behavior where the DL applications may fail. The project will also investigate how any changes in data or model architecture can impact a pre-trained model in order to guide regression test case selection and prioritization process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
软件开发的模式正在发生转变,决策越来越多地从手工编码的程序逻辑转移到依赖深度学习(DL)-语音处理、图像识别、机器人等流行的应用程序正在使用深度学习来实现其核心组件。深度神经网络(DNNS)是一种广泛使用的深度神经网络,是这一进步背后的关键。随着传统应用的如此惊人的增长,DNN和其他DL技术也越来越多地被用于安全关键型系统,如自动驾驶汽车、医疗诊断、恶意软件检测和飞机防撞系统。如此广泛地采用DL技术伴随着对这些系统的可靠性的担忧,因为已经报道了几个基于DL的行为的高调实例。因此,使用逼真的转角情况严格测试这些应用程序以确保高可靠性就变得至关重要。然而,由于诸如DNN之类的DL实现与传统软件之间的基本体系结构差异,现有的软件测试技术并不以任何明显的方式适用于它们。事实上,谷歌、特斯拉等公司正面临着越来越多的软件测试挑战,以确保可靠和安全的数字图书馆应用程序。因此,系统地测试基于数字图书馆的软件系统将是提高敏感和安全关键数字图书馆系统的安全性和可靠性的重要一步。本项目将设计、实现和评估一个新的软件测试框架,以评估深度学习应用程序的可靠性,并在应用程序开发和维护阶段检测错误行为。特别是,建议的框架将开发新的白盒测试策略、现实的测试用例生成技术和回归测试技术来评估DL应用程序。基于DL的编程范例的一个独特特征是最终应用程序高度依赖训练数据。因此,该研究将构建新的白盒测试策略,将模型和训练数据作为一个整体进行评估。此外,这项研究将设计和部署技术来生成新的测试用例,这些测试用例可以捕获DL应用程序可能失败的真实世界的角例行为。该项目还将调查数据或模型架构中的任何更改如何影响预先训练的模型,以指导回归测试用例选择和优先处理过程。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Approximate Execution Semantics From Traces for Binary Function Similarity
- DOI:10.1109/tse.2022.3231621
- 发表时间:2023-04
- 期刊:
- 影响因子:7.4
- 作者:Kexin Pei;Zhou Xuan;Junfeng Yang;S. Jana;Baishakhi Ray
- 通讯作者:Kexin Pei;Zhou Xuan;Junfeng Yang;S. Jana;Baishakhi Ray
PMFuzz: test case generation for persistent memory programs
- DOI:10.1145/3445814.3446691
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Sihang Liu;Suyash Mahar;Baishakhi Ray;S. Khan
- 通讯作者:Sihang Liu;Suyash Mahar;Baishakhi Ray;S. Khan
On Multi-Modal Learning of Editing Source Code
- DOI:10.1109/ase51524.2021.9678559
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Saikat Chakraborty;Baishakhi Ray
- 通讯作者:Saikat Chakraborty;Baishakhi Ray
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baishakhi Ray其他文献
Variation of Gender Biases in Visual Recognition Models Before and After Finetuning
视觉识别模型微调前后性别偏差的变化
- DOI:
10.48550/arxiv.2303.07615 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jaspreet Ranjit;Tianlu Wang;Baishakhi Ray;Vicente Ordonez - 通讯作者:
Vicente Ordonez
A Case Study on the Impact of Similarity Measure on Information Retrieval based Software Engineering Tasks
相似性度量对基于信息检索的软件工程任务影响的案例研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Md Masudur Rahman;Saikat Chakraborty;G. Kaiser;Baishakhi Ray - 通讯作者:
Baishakhi Ray
Recommending GitHub Projects for Developer Onboarding
推荐用于开发人员入门的 GitHub 项目
- DOI:
10.1109/access.2018.2869207 - 发表时间:
2018-09 - 期刊:
- 影响因子:3.9
- 作者:
Chao Liu;Dan Yang;Xiaohong Zhang;Baishakhi Ray;Md. Masudur Rahman - 通讯作者:
Md. Masudur Rahman
KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution
KGym:在 Linux 内核崩溃解决方案上对大型语言模型进行基准测试的平台和数据集
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alex Mathai;Chenxi Huang;Petros Maniatis;A. Nogikh;Franjo Ivancic;Junfeng Yang;Baishakhi Ray - 通讯作者:
Baishakhi Ray
Automatic Map Generation for Autonomous Driving System Testing
用于自动驾驶系统测试的自动地图生成
- DOI:
10.48550/arxiv.2206.09357 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yun Tang;Yuan Zhou;Kairui Yang;Ziyuan Zhong;Baishakhi Ray;Yang Liu;Ping;Junbo Chen - 通讯作者:
Junbo Chen
Baishakhi Ray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baishakhi Ray', 18)}}的其他基金
Collaborative Research: SHF: Medium: Learning Semantics of Code To Automate Software Assurance Tasks
协作研究:SHF:媒介:学习代码语义以自动化软件保障任务
- 批准号:
2313055 - 财政年份:2023
- 资助金额:
$ 53.01万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Causal Performance Debugging for Highly-Configurable Systems
合作研究:SHF:中:高度可配置系统的因果性能调试
- 批准号:
2107405 - 财政年份:2021
- 资助金额:
$ 53.01万 - 项目类别:
Standard Grant
Workshop on Deep Learning and Software Engineering
深度学习与软件工程研讨会
- 批准号:
1945999 - 财政年份:2019
- 资助金额:
$ 53.01万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: Automated Detection and Repair of Error Handling Bugs in SSL/TLS Implementations
TWC:小:协作:自动检测和修复 SSL/TLS 实现中的错误处理错误
- 批准号:
1946068 - 财政年份:2019
- 资助金额:
$ 53.01万 - 项目类别:
Standard Grant
EAGER: Finding Semantic Security Bugs with Pseudo-Oracle Testing
EAGER:通过伪 Oracle 测试查找语义安全漏洞
- 批准号:
1842456 - 财政年份:2018
- 资助金额:
$ 53.01万 - 项目类别:
Standard Grant
CHS: Small: Translating Compilers for Visual Computing in Dynamic Languages
CHS:小型:用动态语言翻译用于视觉计算的编译器
- 批准号:
1936523 - 财政年份:2018
- 资助金额:
$ 53.01万 - 项目类别:
Standard Grant
CHS: Small: Translating Compilers for Visual Computing in Dynamic Languages
CHS:小型:用动态语言翻译用于视觉计算的编译器
- 批准号:
1619123 - 财政年份:2016
- 资助金额:
$ 53.01万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: Automated Detection and Repair of Error Handling Bugs in SSL/TLS Implementations
TWC:小:协作:自动检测和修复 SSL/TLS 实现中的错误处理错误
- 批准号:
1618771 - 财政年份:2016
- 资助金额:
$ 53.01万 - 项目类别:
Standard Grant
相似海外基金
Systematic and Automated Software Migration via Model-Driven Engineering
通过模型驱动工程实现系统化、自动化的软件迁移
- 批准号:
RGPIN-2020-05713 - 财政年份:2022
- 资助金额:
$ 53.01万 - 项目类别:
Discovery Grants Program - Individual
Towards Systematic and Cost-Effective Monitoring of Large-Scale Software Systems
实现大规模软件系统的系统化且经济高效的监控
- 批准号:
RGPIN-2021-03900 - 财政年份:2022
- 资助金额:
$ 53.01万 - 项目类别:
Discovery Grants Program - Individual
Towards a Systematic Process to Produce High-Quality Software Fixes
迈向生成高质量软件修复的系统化流程
- 批准号:
RGPIN-2019-07007 - 财政年份:2022
- 资助金额:
$ 53.01万 - 项目类别:
Discovery Grants Program - Individual
Systematic and Automated Software Migration via Model-Driven Engineering
通过模型驱动工程实现系统化、自动化的软件迁移
- 批准号:
RGPIN-2020-05713 - 财政年份:2021
- 资助金额:
$ 53.01万 - 项目类别:
Discovery Grants Program - Individual
CAREER: An AI Empowered Architecture-Centric Framework for Systematic Software-Performance Optimization
职业:人工智能赋能的以架构为中心的系统软件性能优化框架
- 批准号:
2044888 - 财政年份:2021
- 资助金额:
$ 53.01万 - 项目类别:
Continuing Grant
Towards Systematic and Cost-Effective Monitoring of Large-Scale Software Systems
实现大规模软件系统的系统化且经济高效的监控
- 批准号:
DGECR-2021-00239 - 财政年份:2021
- 资助金额:
$ 53.01万 - 项目类别:
Discovery Launch Supplement
Towards a Systematic Process to Produce High-Quality Software Fixes
迈向生成高质量软件修复的系统化流程
- 批准号:
RGPIN-2019-07007 - 财政年份:2021
- 资助金额:
$ 53.01万 - 项目类别:
Discovery Grants Program - Individual
Towards Systematic and Cost-Effective Monitoring of Large-Scale Software Systems
实现大规模软件系统的系统化且经济高效的监控
- 批准号:
RGPIN-2021-03900 - 财政年份:2021
- 资助金额:
$ 53.01万 - 项目类别:
Discovery Grants Program - Individual
Towards a Systematic Process to Produce High-Quality Software Fixes
迈向生成高质量软件修复的系统化流程
- 批准号:
RGPIN-2019-07007 - 财政年份:2020
- 资助金额:
$ 53.01万 - 项目类别:
Discovery Grants Program - Individual
Systematic and Automated Software Migration via Model-Driven Engineering
通过模型驱动工程实现系统化、自动化的软件迁移
- 批准号:
RGPIN-2020-05713 - 财政年份:2020
- 资助金额:
$ 53.01万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




