CAREER: Becoming Euclid: Characterizing the geometric intuitions that support formal learning in mathematics

职业:成为欧几里得:描述支持数学正式学习的几何直觉

基本信息

  • 批准号:
    1845924
  • 负责人:
  • 金额:
    $ 171.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Only humans are capable of doing formal mathematics, like the geometry in Euclid's Elements. The arguments and proofs of this geometry require one to imagine points so small they have no dimension and lines that extend so far they never end. And yet the points and lines experienced in everyday life have dimension and are finite. Where do the uniquely human ideas of abstract points and lines come from? To what extent does human reasoning work with idealizations and abstractions and to what extent does it remain rooted in everyday, physical finitudes? This project will address such questions by exploring three interrelated cognitive aspects of human geometric aptitude: 1) the role of mental simulation and rule-based reasoning in children's and adults' basic judgments about triangles; 2) the conditions that allow infants, children, and adults to identify lines as the shortest distance between two points; and 3) the effects of couching geometry in a physical context (e.g., gravity) on children's and adults' judgments about the fastest path between two locations in space. This proposal will characterize how early emerging perceptual sensitivities to the properties of the scenes and objects of everyday life might form the foundation of human understanding of the imperceptible. This understanding lies at the heart of much human achievement and also constitutes one of the main aims of school learning. The promise of this project is that in uncovering the basic and universal spatial intuitions humans rely on when confronted with difficult and novel geometry problems, the field will better be able to develop pedagogies that build on the strengths and supplement the limitations of these intuitions. The project is supported by a CAREER award to New York University by the EHR Core Research (ECR) program, which supports work that advances the fundamental research literature on STEM learning.In three series of experiments, the project will both conduct research in active educational settings and lay the foundation for future educational interventions that harness our basic and universal spatial intuitions. Series 1 will characterize how people reason intuitively about the properties of triangles. Are their properties evaluated through mental simulation and imagery or through abstract rules? Series 2 will explore how people think about lines. Under what conditions are lines recognized as the shortest path between two points? How does that recognition relate to everyday experiences, like navigating from one place to another, through development? Series 3 will probe geometric intuitions about efficient paths in physical contexts with gravity. The experiments will take place in the laboratory and in the National Museum of Mathematics (MoMath). MoMath will also be a site for general dissemination of the project's findings, including a talk series that will bring together cognitive scientists, educators, and the public. This project will thus reach thousands of individuals through basic science research and through outreach at the museum.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
只有人类才有能力做形式数学,比如欧几里得几何学中的几何。这种几何的论证和证明要求人们想象点如此之小,以至于没有维度,线如此之长,以至于没有尽头。然而,日常生活中所经历的点和线是有维度的,是有限的。人类独特的抽象点和线的概念从何而来?人类的推理在多大程度上与理想化和抽象有关,在多大程度上仍植根于日常的、物理的有限性?本项目将通过探索人类几何天赋的三个相互关联的认知方面来解决这些问题:1)心理模拟和基于规则的推理在儿童和成人对三角形的基本判断中的作用;2)允许婴儿、儿童和成人识别两点之间最短距离的线的条件;3)物理环境(如重力)下的几何训练对儿童和成人对空间中两个位置之间最快路径的判断的影响。这一建议将描述早期出现的对日常生活中场景和物体的属性的感知敏感性如何形成人类对不可感知的理解的基础。这种理解是人类许多成就的核心,也是学校学习的主要目标之一。这个项目的承诺是,在揭示人类在面对困难和新颖的几何问题时所依赖的基本和普遍的空间直觉时,该领域将能够更好地开发基于这些直觉的优势和补充这些直觉的局限性的教学法。该项目得到了EHR核心研究(ECR)项目授予纽约大学的CAREER奖的支持,该项目支持推进STEM学习基础研究文献的工作。在三个系列的实验中,该项目将在积极的教育环境中进行研究,并为未来的教育干预奠定基础,利用我们的基本和普遍的空间直觉。系列一将描述人们如何凭直觉推断三角形的属性。它们的属性是通过心理模拟和意象还是通过抽象规则来评估的?第二季将探索人们是如何思考台词的。在什么条件下直线被认为是两点之间的最短路径?这种认知如何与日常体验联系起来,比如通过发展从一个地方导航到另一个地方?系列3将探讨重力物理环境下有效路径的几何直觉。实验将在实验室和国家数学博物馆(MoMath)进行。MoMath还将成为一个广泛传播该项目的发现的网站,包括一个将认知科学家、教育家和公众聚集在一起的系列讲座。因此,这个项目将通过基础科学研究和博物馆的外展活动影响到成千上万的人。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Young children’s drawings and descriptions of layouts and objects.
幼儿的图画以及布局和物体的描述。
Pictorial depth cues in young children’s drawings of layouts and objects.
幼儿的布局和物体图画中的图画深度暗示。
Common Content, Philosophy, and Programming Support Thriving Collaborations Between Cognitive Science Labs and Museums
  • DOI:
    10.1111/mbe.12397
  • 发表时间:
    2023-12-14
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Dillon,Moira R.;Lawrence,Cindy R.
  • 通讯作者:
    Lawrence,Cindy R.
Commonsense psychology in human infants and machines
人类婴儿和机器的常识心理学
  • DOI:
    10.1016/j.cognition.2023.105406
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Stojnić, Gala;Gandhi, Kanishk;Yasuda, Shannon;Lake, Brenden M.;Dillon, Moira R.
  • 通讯作者:
    Dillon, Moira R.
Baby Intuitions Benchmark (BIB): Discerning the goals, preferences, and actions of others
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kanishk Gandhi;Gala Stojnic;B. Lake;M. Dillon
  • 通讯作者:
    Kanishk Gandhi;Gala Stojnic;B. Lake;M. Dillon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moira Dillon其他文献

Moira Dillon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Becoming an efficient reader: Tracking the emergence of high-quality written word representations in children
成为一名高效的阅读者:追踪儿童高质量书面文字表征的出现
  • 批准号:
    ES/X002012/1
  • 财政年份:
    2023
  • 资助金额:
    $ 171.84万
  • 项目类别:
    Research Grant
Becoming Digital - Onboarding Local Artist Projects to the Blockchain
数字化——将本地艺术家项目引入区块链
  • 批准号:
    10070006
  • 财政年份:
    2023
  • 资助金额:
    $ 171.84万
  • 项目类别:
    Collaborative R&D
Becoming Peers Beyond Positionality: An Anthropology of Lived Experience in Psychiatric Social Work
成为超越立场的同伴:精神病社会工作生活经验的人类学
  • 批准号:
    23KJ1909
  • 财政年份:
    2023
  • 资助金额:
    $ 171.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Creating Communities of Practice to Support NOYCE Scholars in Becoming More Adaptable Mathematics Teachers
创建实践社区以支持 NOYCE 学者成为适应性更强的数学教师
  • 批准号:
    2243398
  • 财政年份:
    2023
  • 资助金额:
    $ 171.84万
  • 项目类别:
    Continuing Grant
Becoming a Scientist: A Study of Identity Balance and the Persistence of Hispanic Undergraduate Students in Engineering and Biological Sciences
成为一名科学家:身份平衡与西班牙裔工程和生物科学本科生的坚持研究
  • 批准号:
    2334638
  • 财政年份:
    2023
  • 资助金额:
    $ 171.84万
  • 项目类别:
    Continuing Grant
Heads Up! Becoming Concussion Smart
小心!
  • 批准号:
    499353
  • 财政年份:
    2023
  • 资助金额:
    $ 171.84万
  • 项目类别:
    Salary Programs
Becoming Korean: K-pop idol culture and the rise of soft power in Iran
成为韩国人:韩国流行偶像文化与伊朗软实力的崛起
  • 批准号:
    2876443
  • 财政年份:
    2023
  • 资助金额:
    $ 171.84万
  • 项目类别:
    Studentship
Transforming Education for Democracy through Aesthetic and Embodied Learning, Responsive Pedagogies and Democracy-as-becoming
通过审美和具体学习、响应式教学法和民主转型来转变民主教育
  • 批准号:
    10063654
  • 财政年份:
    2023
  • 资助金额:
    $ 171.84万
  • 项目类别:
    EU-Funded
Eat, heat and listen: on becoming a mammal
吃、加热和听:成为哺乳动物
  • 批准号:
    NE/X001504/1
  • 财政年份:
    2023
  • 资助金额:
    $ 171.84万
  • 项目类别:
    Research Grant
Plato and the concept of becoming like a god
柏拉图和变得像神的概念
  • 批准号:
    23K00035
  • 财政年份:
    2023
  • 资助金额:
    $ 171.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了