CAREER: Robustifying Machine Learning for Cyber-Physical Systems
职业:增强网络物理系统的机器学习能力
基本信息
- 批准号:1845969
- 负责人:
- 金额:$ 51.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This robustifying machine learning (ML) for cyber-physical systems (CPSs) project focuses on detecting and reducing the vulnerabilities of ML models that have become pervasive and are being deployed for decision-making in real-life CPS applications including self-driving cars, and robotic air vehicles. The growing prospect of machine learning approaches such as deep Convolutional Neural Networks (CNN) and deep Reinforcement Learning (DRL) being used in CPSs (e.g., self-driving cars) has raised concerns around safety and robustness of autonomous agents. Recent work on generating adversarial attacks have shown that it is computationally feasible for a bad actor to fool a deep learning (DL) model dramatically. Apart from adversarial attacks, such DL models can also succumb to the so-called 'edge-cases' where the real-life operational situation presents data that are not well-represented in the training data set. Such cases have been the primary reason for quite a few self-driving car accidents recently. Although initial research has begun to address scenarios with specific attack models, there remains a significant knowledge gap regarding detection and adaptation of ML models to 'edge-cases' and adversarial attacks in the context of CPS.With this motivation, this project builds a meta-learning-based supervisory framework and associated algorithms to detect and mitigate ML system vulnerabilities which will substantially reduce the risk in using ML for safety and time-critical systems. The science driver applications are self-driving cars and robotics. The algorithm validation and evaluation use experimental self-driving cars and robotics test beds at Iowa State in collaboration with the Institution of Transportation and NVIDIA.Research is integrated with education to support the goal of training students in the critical interdisciplinary area of system theory and data science, which is in dire need of rapid and quality workforce development for sustained economic and social growth of the United States. Education plans also include curriculum development at graduate and undergraduate level, undergraduate research experience, academic competitions and outreach activities involving both high school students and teachers. Outcomes of this project will support NSF's mission of "Harnessing the Data Revolution" for many critical CPSs that currently involve ML or will involve it in future, such as manufacturing processes, power grid, smart cities and transportation systems, to make them safer, more efficient and cost effective.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个用于网络物理系统(CPS)的鲁棒性机器学习(ML)项目的重点是检测和减少ML模型的漏洞,这些模型已变得普遍存在,并被部署用于现实生活CPS应用(包括自动驾驶汽车)中的决策和机器人飞行器。机器学习方法的日益增长的前景,例如深度卷积神经网络(CNN)和深度强化学习(DRL),用于CPS(例如,自动驾驶汽车)已经引起了对自主代理的安全性和鲁棒性的关注。最近关于生成对抗性攻击的工作表明,一个坏行为者戏剧性地欺骗深度学习(DL)模型在计算上是可行的。除了对抗性攻击之外,这种DL模型还可能屈服于所谓的“边缘情况”,即现实生活中的操作情况呈现的数据在训练数据集中没有得到很好的表示。这些案例是最近发生的许多自动驾驶汽车事故的主要原因。虽然初步研究已经开始解决特定攻击模型的场景,但在CPS背景下,关于ML模型对“边缘案例”和对抗性攻击的检测和适应,仍然存在显著的知识差距。这个项目建立了一个元学习,基于监督框架和相关算法来检测和缓解ML系统漏洞,这将大大降低使用ML进行安全的风险时间关键型系统。科学驱动应用是自动驾驶汽车和机器人。算法验证和评估使用了爱荷华州的实验性自动驾驶汽车和机器人测试台,并与交通运输研究所和英伟达合作。研究与教育相结合,以支持在系统理论和数据科学的关键跨学科领域培养学生的目标,这迫切需要快速和高质量的劳动力发展,以促进美国的持续经济和社会增长。教育计划还包括研究生和本科生一级的课程开发、本科生研究经验、学术竞赛和涉及高中学生和教师的外联活动。该项目的成果将支持NSF的“利用数据革命”的使命,用于目前涉及ML或未来将涉及ML的许多关键CPS,例如制造流程,电网,智能城市和交通系统,使它们更安全,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识产权进行评估来支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Reinforcement Learning for Adaptive Traffic Signal Control
自适应交通信号控制的深度强化学习
- DOI:10.1115/dscc2019-9076
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Tan, Kai Liang;Poddar, Subhadipto;Sarkar, Soumik;Sharma, Anuj
- 通讯作者:Sharma, Anuj
Generative Semantic Domain Adaptation for Perception in Autonomous Driving
- DOI:10.1007/s42421-022-00057-4
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Amitangshu Mukherjee;Ameya Joshi;Anuj Sharma;C. Hegde;S. Sarkar
- 通讯作者:Amitangshu Mukherjee;Ameya Joshi;Anuj Sharma;C. Hegde;S. Sarkar
Cross-Gradient Aggregation for Decentralized Learning from Non-IID data
- DOI:
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Yasaman Esfandiari;Sin Yong Tan;Zhanhong Jiang;Aditya Balu;Ethan Herron;C. Hegde;S. Sarkar
- 通讯作者:Yasaman Esfandiari;Sin Yong Tan;Zhanhong Jiang;Aditya Balu;Ethan Herron;C. Hegde;S. Sarkar
MDPGT: Momentum-based Decentralized Policy Gradient Tracking
MDPGT:基于动量的去中心化政策梯度跟踪
- DOI:10.48550/arxiv.2112.02813
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhanhong Jiang, Xian Yeow
- 通讯作者:Zhanhong Jiang, Xian Yeow
Root-cause analysis for time-series anomalies via spatiotemporal graphical modeling in distributed complex systems
- DOI:10.1016/j.knosys.2020.106527
- 发表时间:2021-01-09
- 期刊:
- 影响因子:8.8
- 作者:Liu, Chao;Lore, Kin Gwn;Sarkar, Soumik
- 通讯作者:Sarkar, Soumik
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soumik Sarkar其他文献
Digital assistances in remote operations for ITER test blanket system replacement: An experimental validation
- DOI:
10.1016/j.fusengdes.2023.113425 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:
- 作者:
Olivier David;Soumik Sarkar;Nolwenn Kammerer;Coline Nantermoz;Fabrice Mayran de Chamisso;Boris Meden;Jean-Pierre Friconneau;Jean-Pierre Martins - 通讯作者:
Jean-Pierre Martins
Deep Learning for Fast Atomic Force Microscopy Data Analytics
- DOI:
10.1016/j.bpj.2020.11.1799 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Anwesha Sarkar;Joshua Waite;Soumik Sarkar - 通讯作者:
Soumik Sarkar
Leveraging Soil Mapping and Machine Learning to Improve Spatial Adjustments in Plant Breeding Trials
利用土壤测绘和机器学习改善植物育种试验中的空间调整
- DOI:
10.1101/2024.01.03.574114 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matthew E. Carroll;Luis G. Riera;Bradley A. Miller;Philip M. Dixon;B. Ganapathysubramanian;Soumik Sarkar;Asheesh K. Singh - 通讯作者:
Asheesh K. Singh
A chemoselective electrochemical birch carboxylation of pyridines
吡啶的化学选择性电化学桦木羧化反应
- DOI:
10.1039/d4gc05976j - 发表时间:
2024-12-06 - 期刊:
- 影响因子:9.200
- 作者:
Soumik Sarkar; Rohit;Michael W. Meanwell - 通讯作者:
Michael W. Meanwell
Multi-Sensor and Multi-temporal High-Throughput Phenotyping for Monitoring and Early Detection of Water-Limiting Stress in Soybean
用于监测和早期检测大豆限水胁迫的多传感器和多时间高通量表型分析
- DOI:
10.48550/arxiv.2402.18751 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sarah E. Jones;Timilehin T. Ayanlade;Benjamin Fallen;T. Jubery;Arti Singh;B. Ganapathysubramanian;Soumik Sarkar;Asheesh K. Singh - 通讯作者:
Asheesh K. Singh
Soumik Sarkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soumik Sarkar', 18)}}的其他基金
CPS: Frontier: Collaborative Research: COALESCE: COntext Aware LEarning for Sustainable CybEr-Agricultural Systems
CPS:前沿:协作研究:COALESCE:可持续网络农业系统的情境感知学习
- 批准号:
1954556 - 财政年份:2021
- 资助金额:
$ 51.16万 - 项目类别:
Continuing Grant
CPS: Medium: Collaborative Research: Active Shooter Tracking & Evacuation Routing for Survival (ASTERS)
CPS:媒介:协作研究:主动射手跟踪
- 批准号:
1932033 - 财政年份:2019
- 资助金额:
$ 51.16万 - 项目类别:
Standard Grant
CRII: CPS: A Knowledge Representation and Information Fusion Framework for Decision Making in Complex Cyber-Physical Systems
CRII:CPS:复杂网络物理系统决策的知识表示和信息融合框架
- 批准号:
1464279 - 财政年份:2015
- 资助金额:
$ 51.16万 - 项目类别:
Standard Grant