CAREER:Program Analyses for Improving Reliability of Probabilistic Software
职业:提高概率软件可靠性的程序分析
基本信息
- 批准号:1846354
- 负责人:
- 金额:$ 51.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many emerging applications operate on noisy data and make decisions under uncertainty. Probabilistic programming languages represent such computations as programs that operate on random variables and probability distributions. While the existing languages open the world of powerful probabilistic inference even to programmers with limited knowledge of statistics, new techniques need to be developed to improve programmer productivity and simplify debugging of probabilistic software. This project investigates the hypothesis that static program analysis, with its sound and rich symbolic reasoning, is a solid foundation for these techniques. This project will lead to new automated tools to help scientists, engineers, and software developers build reliable and robust probabilistic software. The project will integrate research and education by developing courses based on newly developed ideas, with the goal of empowering future software engineers with solid quantitative reasoning skills.The project will investigate both the foundations of automated relational analysis for probabilistic computations and the practical application of probabilistic analysis to help application programmers and developers of probabilistic programming systems. The project will investigate two impactful relational analyses for probabilistic programs: sensitivity analysis and semantic differencing. The project will develop an ecosystem of techniques that leverage these analyses to identify errors in probabilistic programming systems, improve robustness of probabilistic computations through program transformations, and optimize the performance of applications that operate on noisy data. The benefits and key components of the approach (including flexible abstractions, transformations, and solving mechanisms) will extend to various application domains with inherent randomness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多新兴的应用程序在嘈杂的数据上运行,并在不确定的情况下做出决策。概率编程语言将这样的计算表示为对随机变量和概率分布进行操作的程序。虽然现有的语言甚至为具有有限统计知识的程序员打开了强大的概率推理的世界,但需要开发新的技术来提高程序员的生产力并简化概率软件的调试。该项目调查了静态程序分析的假设,其健全和丰富的符号推理,是这些技术的坚实基础。这个项目将导致新的自动化工具来帮助科学家、工程师和软件开发人员构建可靠和健壮的概率软件。该项目将通过开发基于新思想的课程来整合研究和教育,目标是使未来的软件工程师具备扎实的定量推理技能。该项目将研究概率计算的自动关系分析的基础和概率分析的实际应用,以帮助应用程序编程人员和概率编程系统的开发人员。该项目将研究概率程序的两种有影响力的关系分析:敏感性分析和语义差异。该项目将开发一个技术生态系统,利用这些分析来识别概率编程系统中的错误,通过程序转换提高概率计算的鲁棒性,并优化在噪声数据上运行的应用程序的性能。该方法的优点和关键组件(包括灵活的抽象、转换和解决机制)将扩展到具有固有随机性的各种应用程序领域。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proof transfer for fast certification of multiple approximate neural networks
- DOI:10.1145/3527319
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Shubham Ugare;Gagandeep Singh
- 通讯作者:Shubham Ugare;Gagandeep Singh
ASTRA: Understanding the practical impact of robustness for probabilistic programs
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zixin Huang;Saikat Dutta;Sasa Misailovic
- 通讯作者:Zixin Huang;Saikat Dutta;Sasa Misailovic
AquaSense: Automated Sensitivity Analysis of Probabilistic Programs via Quantized Inference
- DOI:10.1007/978-3-031-45332-8_16
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zitong Zhou;Zixin Huang;Sasa Misailovic
- 通讯作者:Zitong Zhou;Zixin Huang;Sasa Misailovic
AQUA: Automated Quantized Inference for Probabilistic Programs
AQUA:概率程序的自动量化推理
- DOI:10.1007/978-3-030-88885-5_16
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Huang, Zixin;Dutta, Saikat;Misailovic, Sasa
- 通讯作者:Misailovic, Sasa
SixthSense: Debugging Convergence Problems in Probabilistic Programs via Program Representation Learning
SixthSense:通过程序表示学习调试概率程序中的收敛问题
- DOI:10.1007/978-3-030-99429-7_7
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dutta, Saikat;Huang, Zixin;Misailovic, Sasa
- 通讯作者:Misailovic, Sasa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sasa Misailovic其他文献
Accuracy-aware optimization of approximate programs
近似程序的精度感知优化
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sasa Misailovic - 通讯作者:
Sasa Misailovic
Efficient Approximation for Streaming Video Processing Pipelines
流视频处理管道的高效近似
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ran Xu;Jinkyu Koo;Rakesh Kumar;Peter Bai;Subrata Mitra;Sasa Misailovic;S. Bagchi - 通讯作者:
S. Bagchi
The Java Pathfinder Workshop 2019
2019 年 Java 探路者研讨会
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Cyrille Artho;Quoc;P. Aldous;Alyas Almaawi;Lucas Bang;Lasse Berglund;T. Bultan;Zhenbang Chen;Hayes Converse;Wei Dong;William Eiers;Miloš Gligorić;Simon Goldsmith;Lars Grunske;Joshua Hooker;Ismet Burak Kadron;Timo Kehrer;S. Khurshid;X. Le;D. Lo;Eric Mercer;Sasa Misailovic;Egor Namakonov;Hoang Lam Nguyen;Yannic Noller;B. Ogles;Rohan Padhye;P. Parízek;C. Păsăreanu;S. J. Powell;Seemanta Saha;Koushik Sen;Elena Sherman;Kyle Storey;Minxing Tang;W. Visser;Ji Wang;Hengbiao Yu - 通讯作者:
Hengbiao Yu
Phase-aware optimization in approximate computing
近似计算中的相位感知优化
- DOI:
10.1109/cgo.2017.7863739 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
S. Mitra;Manish K. Gupta;Sasa Misailovic;S. Bagchi - 通讯作者:
S. Bagchi
Proving acceptability properties of relaxed nondeterministic approximate programs
证明宽松的非确定性近似程序的可接受性
- DOI:
10.1145/2254064.2254086 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Michael Carbin;Deokhwan Kim;Sasa Misailovic;M. Rinard - 通讯作者:
M. Rinard
Sasa Misailovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sasa Misailovic', 18)}}的其他基金
Collaborative Research: SHF: Medium: Natural Language Models with Execution Data for Software Testing
协作研究:SHF:媒介:用于软件测试的具有执行数据的自然语言模型
- 批准号:
2313028 - 财政年份:2023
- 资助金额:
$ 51.17万 - 项目类别:
Standard Grant
SHF: Small: Probabilistic Programming and Statistical Verification for Safe Autonomy
SHF:小:安全自治的概率编程和统计验证
- 批准号:
2008883 - 财政年份:2020
- 资助金额:
$ 51.17万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Testing in the Era of Approximation
SHF:媒介:协作研究:近似时代的测试
- 批准号:
1703637 - 财政年份:2017
- 资助金额:
$ 51.17万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Cross-Boundary Program Analyses for Web Applications
职业:Web 应用程序的跨界程序分析
- 批准号:
2321444 - 财政年份:2023
- 资助金额:
$ 51.17万 - 项目类别:
Continuing Grant
Development of a new computational program for extensive bimolecular interaction analyses
开发用于广泛双分子相互作用分析的新计算程序
- 批准号:
580491-2022 - 财政年份:2022
- 资助金额:
$ 51.17万 - 项目类别:
University Undergraduate Student Research Awards
Multilevel analyses of oral health conditions among older adults in the All of Us Research Program
“我们所有人研究计划”中老年人口腔健康状况的多层次分析
- 批准号:
10658463 - 财政年份:2022
- 资助金额:
$ 51.17万 - 项目类别:
CAREER: Cross-Boundary Program Analyses for Web Applications
职业:Web 应用程序的跨界程序分析
- 批准号:
2047980 - 财政年份:2021
- 资助金额:
$ 51.17万 - 项目类别:
Continuing Grant
CSR: Small: Repurposing Spatial Memory Safety Support in Commodity Processors for Temporal Memory Safety, Other Program Analyses, Hardware-Accelerated Data Structures, and More
CSR:小:重新利用商品处理器中的空间内存安全支持,以实现临时内存安全、其他程序分析、硬件加速数据结构等
- 批准号:
2029720 - 财政年份:2020
- 资助金额:
$ 51.17万 - 项目类别:
Standard Grant
CSR: Small: Repurposing Spatial Memory Safety Support in Commodity Processors for Temporal Memory Safety, Other Program Analyses, Hardware-Accelerated Data Structures, and More
CSR:小:重新利用商品处理器中的空间内存安全支持,以实现临时内存安全、其他程序分析、硬件加速数据结构等
- 批准号:
1814430 - 财政年份:2018
- 资助金额:
$ 51.17万 - 项目类别:
Standard Grant
SHF:Small:Scalable and Precise Program Analyses via Linear Conjunctive Language Reachability
SHF:Small:通过线性联合语言可达性进行可扩展且精确的程序分析
- 批准号:
1816812 - 财政年份:2018
- 资助金额:
$ 51.17万 - 项目类别:
Standard Grant
Assessing a Take Home Naloxone Program that Provides Free Kits to All: Using Effectiveness and Cost-Effectiveness Analyses to Determine the Optimal Distribution
评估向所有人提供免费试剂盒的纳洛酮带回家计划:利用有效性和成本效益分析来确定最佳分配
- 批准号:
391448 - 财政年份:2018
- 资助金额:
$ 51.17万 - 项目类别:
Operating Grants
CAREER: Quality Matters: Dynamic, Static and Proactive Analyses for Automated Program Repair
职业:质量很重要:自动程序修复的动态、静态和主动分析
- 批准号:
1750116 - 财政年份:2018
- 资助金额:
$ 51.17万 - 项目类别:
Continuing Grant
SHF:Small:Scalable and Precise Program Analyses via Linear Conjunctive Language Reachability
SHF:Small:通过线性联合语言可达性进行可扩展且精确的程序分析
- 批准号:
1917924 - 财政年份:2018
- 资助金额:
$ 51.17万 - 项目类别:
Standard Grant














{{item.name}}会员




