CAREER: Inference of transcriptional regulation under environmental perturbations

职业:环境扰动下转录调控的推断

基本信息

  • 批准号:
    1846559
  • 负责人:
  • 金额:
    $ 85.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The genome defines blueprints necessary for the proper functioning of cells, and for complex organisms, such as vertebrates, it is nearly identical for most cells that make up the individual. Despite this, cells vary widely in shape and function. Understanding the mechanisms by which individual cells are set on the path to, and then maintain, their identity and function, and how they communicate with each other in order to coordinate development of the whole organism, is of keen interest to developmental biologists. The goals of this project are two-fold. First, it develops computational tools for 1) characterizing the impact of cell-cell communication on molecular function, 2) measuring biological variation in molecular function between cells collected from different tissues or individuals, and 3) predicting experimental strategies for manipulating cell identity and function. Second, it trains high school, undergraduate and graduate students in the use of these tools and data analysis techniques, and develops approaches to engage students in interdisciplinary team-based genomics research. The project will thus achieve the broader goal of training the next generation of data scientists to address important problems in biology using genomics technologies. Recent developments in DNA sequencing technologies enable the measurement of different dynamic aspects of gene regulation across a wide spectrum of organisms. For each segment of DNA in a genome, we can now measure a snapshot of its physical accessibility, measure its relative rate of transcription into RNA, identify the location of reversible modifications to the DNA or its anchoring proteins, and even identify other distal DNA segments that are in physical contact with it. The research goal of this project is to quantitatively characterize the mechanisms by which signals from both intrinsic and extrinsic factors are integrated to drive variation in gene and chromatin regulation, and ultimately define cell identity and its dynamics. It specifically develops tools based on deep neural networks to perform in silico perturbations to cells in order to identify the regulators of transcriptional cell state, identify regulatory pathways underlying cellular responses to stimuli, and characterize the effect of cell-cell communication on gene regulation. The educational goal of this project is to develop scalable strategies to train the next generation of genome data scientists at the high school, undergraduate and graduate levels of education to use these tools to address diverse problems in biology in an interdisciplinary team-based science approach. The results of this work can be found at http://qlab.faculty.ucdavis.edu.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基因组定义了细胞正常运作所必需的蓝图,对于复杂的生物体,如脊椎动物,构成个体的大多数细胞的蓝图几乎是相同的。尽管如此,细胞在形状和功能上差异很大。了解单个细胞如何形成并维持其身份和功能的机制,以及它们如何相互沟通以协调整个生物体的发育,是发育生物学家非常感兴趣的问题。这个项目有两个目标。首先,它开发了计算工具,用于1)表征细胞间通讯对分子功能的影响,2)测量从不同组织或个体收集的细胞之间分子功能的生物学变异,以及3)预测操纵细胞身份和功能的实验策略。其次,它训练高中生、本科生和研究生使用这些工具和数据分析技术,并开发方法让学生参与跨学科团队的基因组学研究。因此,该项目将实现更广泛的目标,即培养下一代数据科学家,利用基因组学技术解决生物学中的重要问题。DNA测序技术的最新发展使得在广泛的生物体中测量基因调控的不同动态方面成为可能。对于基因组中的每个DNA片段,我们现在可以测量其物理可达性的快照,测量其转录成RNA的相对速率,确定DNA或其锚定蛋白的可逆修饰的位置,甚至确定与其物理接触的其他远端DNA片段。本项目的研究目标是定量表征来自内在和外在因素的信号整合驱动基因和染色质调控变异的机制,并最终定义细胞身份及其动力学。它专门开发了基于深度神经网络的工具,以对细胞进行硅扰动,以识别转录细胞状态的调节因子,识别细胞对刺激反应的调节途径,并表征细胞间通信对基因调节的影响。该项目的教育目标是制定可扩展的策略,以培养高中、本科和研究生阶段的下一代基因组数据科学家,使他们能够使用这些工具,以跨学科团队为基础的科学方法解决生物学中的各种问题。这项工作的结果可以在http://qlab.faculty.ucdavis.edu.This上找到,该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conserved cell types with divergent features in human versus mouse cortex
  • DOI:
    10.1038/s41586-019-1506-7
  • 发表时间:
    2019-09-05
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Hodge, Rebecca D.;Bakken, Trygve E.;Lein, Ed S.
  • 通讯作者:
    Lein, Ed S.
Projecting clumped transcriptomes onto single cell atlases to achieve single cell resolution
  • DOI:
    10.1101/2022.04.26.489628
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nelson Johansen;G. Quon
  • 通讯作者:
    Nelson Johansen;G. Quon
scBFA: modeling detection patterns to mitigate technical noise in large-scale single-cell genomics data
  • DOI:
    10.1186/s13059-019-1806-0
  • 发表时间:
    2019-09-09
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Li, Ruoxin;Quon, Gerald
  • 通讯作者:
    Quon, Gerald
The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems
  • DOI:
    10.1093/icb/icab114
  • 发表时间:
    2022-02-05
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Chandrasekaran, Sriram;Danos, Nicole;Wolgemuth, Charles
  • 通讯作者:
    Wolgemuth, Charles
Single-Cell RNA-Seq Analysis Reveals Lung Epithelial Cell Type-Specific Responses to HDM and Regulation by Tet1.
  • DOI:
    10.3390/genes13050880
  • 发表时间:
    2022-05-14
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerald Quon其他文献

Single-Cell RNA-Seq Analysis Reveals Cell-type Specific Contribution of Tet1 to Allergic Airway Inflammation in Lung Epithelium
  • DOI:
    10.1016/j.jaci.2021.12.270
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Hong Ji;Tao Zhu;Anthony Brown;Lucy Cai;Gerald Quon
  • 通讯作者:
    Gerald Quon
scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases
scPair:通过利用隐式特征选择和单细胞图谱来促进单细胞多模态分析
  • DOI:
    10.1038/s41467-024-53971-2
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Hongru Hu;Gerald Quon
  • 通讯作者:
    Gerald Quon

Gerald Quon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Continuing Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Research Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Research Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Continuing Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
  • 批准号:
    BB/Y51388X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Research Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
  • 批准号:
    2336886
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Standard Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
  • 批准号:
    2347177
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了