CAREER: Multiscale Assembly of Conjugated Polymers at Dynamic Reconfigurable Interfaces

职业:动态可重构界面上共轭聚合物的多尺度组装

基本信息

  • 批准号:
    1847828
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYControlled assembly of electrically active materials has been a cornerstone to the electronics and energy industries. Recent years have witnessed a surge of semiconducting polymers which promise diverse applications from flexible electronics and transparent solar cells to imperceptible medical devices. However, it remains a central challenge to control the assembly of semiconducting polymers from the molecular to the device scales, which critically impact their device performance. This research addresses this challenge by developing dynamic, reconfigurable interfaces to direct the assembly of semiconducting polymers into highly ordered structures across length scales. The fundamental mechanism of surface-directed polymer assembly will be elucidated to guide the design of such interfaces. This approach, inspired by how biominerals (e.g. bone) are formed, is in contrast to conventional approaches wherein highly ordered, rigid surfaces are employed to direct assembly of electronic materials. This work may ultimately enable high-performance, low-cost printed electronic, energy and biomedical devices in forms that seamlessly interact with the human body and the living environment, which would have impact on the electronic, energy and healthcare industries. The fundamental insights from the planned work can be further extended to areas beyond semiconducting polymers, given the broad applicability of surface-directed assembly to the manufacturing of a wide range of functional materials. The educational activities of the project are integrated with the research component, aiming at narrowing the gap between increasing demand in high-tech workforce and limited enrollment in STEM education in the US. Both polymer sciences and electronics have been at the center stage of high-tech industries. The overarching goal is to attract, nurture and retain STEM talents, particularly women, through public engagement, educational outreach, undergraduate and graduate education. TECHNICAL SUMMARYThis research aims to elucidate the fundamental mechanisms of interfacially-driven assembly of conjugated polymers from the molecular to centimeter scale, and to develop a new dynamic templating approach to achieve polymer assemblies with prescribed order and controlled properties. Although it is known that the multiscale morphology of conjugated polymers (molecular conformation/packing, mesoscale domain size/orientation, macroscale crystallinity/alignment) can modulate the electronic, optical, and mechanical properties by orders of magnitude, it remains a central challenge to assemble conjugated polymers into highly ordered structures across multiple length scales. This project will provide better understanding of the assembly mechanism of semi-rigid donor-acceptor conjugated polymers, which exhibit distinct assembly behavior from the well-studied flexible polymers. The planned work focuses on a particularly important problem in this area: to elucidate the role of interfaces in directing conjugated polymer assembly, considering the predominance of surface-induced nucleation during thin-film deposition from solution. A key aspect that distinguishes this work from previous research is the focus on dynamic, reconfigurable interfaces. This approach is inspired by dynamic, cooperative assemblies ubiquitous in biological systems, which require minimal energy input to attain exquisite structures across length scales. Using a hypothesis-driven approach, this research will provide new fundamental insights on polymer assembly at dynamic, reconfigurable interfaces by complementing in-situ multiscale structural characterizations with free-energy modeling based on nucleation theory. This study will lead to fundamentally new insights on macromolecular assembly -- a subject at the heart of materials research. Many polymer assembly processes take place at interfaces due to generally lower free energy barriers, whereas the mechanism of surface-directed assembly process is much less understood; this is a challenge that this work ultimately addresses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电活性材料的受控组装一直是电子和能源行业的基石。近年来,半导体聚合物的激增,从柔性电子产品和透明太阳能电池到难以察觉的医疗设备,这些聚合物有着广泛的应用前景。然而,控制半导体聚合物从分子到器件尺度的组装仍然是一个核心挑战,这严重影响了它们的器件性能。这项研究通过开发动态的、可重构的界面来解决这一挑战,以指导半导体聚合物在整个长度尺度上组装成高度有序的结构。表面导向聚合物组装的基本机制将被阐明,以指导此类接口的设计。这种方法受到生物矿物(例如骨骼)形成方式的启发,与采用高度有序的刚性表面来直接组装电子材料的传统方法形成鲜明对比。 这项工作可能最终实现高性能,低成本的印刷电子,能源和生物医学设备,其形式与人体和生活环境无缝交互,这将对电子,能源和医疗保健行业产生影响。鉴于表面定向组装对制造各种功能材料的广泛适用性,计划工作的基本见解可以进一步扩展到半导体聚合物以外的领域。该项目的教育活动与研究部分相结合,旨在缩小美国高科技劳动力需求不断增长与STEM教育入学率有限之间的差距。聚合物科学和电子学一直处于高科技产业的中心舞台。总体目标是通过公众参与、教育推广、本科和研究生教育,吸引、培养和留住STEM人才,特别是女性。本研究旨在阐明从分子到厘米尺度的界面驱动共轭聚合物组装的基本机制,并开发一种新的动态模板方法来实现具有预定顺序和可控性质的聚合物组装。尽管已知共轭聚合物的多尺度形态(分子构象/堆积、介观尺度域尺寸/取向、宏观尺度结晶度/排列)可以通过数量级调节电子、光学和机械性质,但将共轭聚合物组装成跨越多个长度尺度的高度有序结构仍然是一个核心挑战。该项目将提供半刚性给体-受体共轭聚合物的组装机制的更好的理解,其表现出不同的组装行为,从研究的柔性聚合物。计划中的工作集中在这一领域的一个特别重要的问题:阐明界面在指导共轭聚合物组装中的作用,考虑到从溶液中薄膜沉积过程中表面诱导成核的优势。这项工作区别于以往的研究的一个关键方面是专注于动态的,可重构的接口。这种方法受到生物系统中普遍存在的动态合作组件的启发,这些组件需要最小的能量输入来获得跨越长度尺度的精致结构。使用假设驱动的方法,这项研究将提供新的基本见解聚合物组装在动态的,可重构的接口,通过补充原位多尺度结构表征与基于成核理论的自由能建模。这项研究将导致对大分子组装的全新见解-这是材料研究的核心主题。由于自由能势垒普遍较低,许多聚合物组装过程发生在界面处,而表面定向组装过程的机制却鲜为人知;这是这项工作最终解决的挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Not All Aggregates Are Made the Same: Distinct Structures of Solution Aggregates Drastically Modulate Assembly Pathways, Morphology, and Electronic Properties of Conjugated Polymers
并非所有聚集体都是相同的:溶液聚集体的不同结构极大地调节共轭聚合物的组装途径、形态和电子特性
  • DOI:
    10.1002/adma.202203055
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Xu, Zhuang;Park, Kyung Sun;Kwok, Justin J.;Lin, Oliver;Patel, Bijal B.;Kafle, Prapti;Davies, Daniel W.;Chen, Qian;Diao, Ying
  • 通讯作者:
    Diao, Ying
Understanding Solution State Conformation and Aggregate Structure of Conjugated Polymers via Small Angle X-ray Scattering
  • DOI:
    10.1021/acs.macromol.1c02449
  • 发表时间:
    2022-06-14
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Kwok, Justin J.;Park, Kyung Sun;Diao, Ying
  • 通讯作者:
    Diao, Ying
When Assembly Meets Processing: Tuning Multiscale Morphology of Printed Conjugated Polymers for Controlled Charge Transport
  • DOI:
    10.1021/acs.chemmater.0c04152
  • 发表时间:
    2021-01-13
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Park, Kyung Sun;Kwok, Justin J.;Diao, Ying
  • 通讯作者:
    Diao, Ying
Design rules for dynamic-template-directed crystallization of conjugated polymers
  • DOI:
    10.1039/c9me00042a
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erfan Mohammadi;Ge Qu;Prapti Kafle;Seok-Heon Jung;Jin‐Kyun Lee;Ying Diao
  • 通讯作者:
    Erfan Mohammadi;Ge Qu;Prapti Kafle;Seok-Heon Jung;Jin‐Kyun Lee;Ying Diao
What Is the Assembly Pathway of a Conjugated Polymer From Solution to Thin Films?
共轭聚合物从溶液到薄膜的组装途径是什么?
  • DOI:
    10.3389/fchem.2020.583521
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Xu Z;Park KS;Diao Y
  • 通讯作者:
    Diao Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Diao其他文献

Photoluminescent delocalized excitons in donor polymers facilitate efficient charge generation for high-performance organic photovoltaics
施主聚合物中的光致发光离域激子有助于高性能有机光伏电池的高效电荷产生
  • DOI:
    10.1038/s41467-025-58352-x
  • 发表时间:
    2025-04-03
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Kui Jiang;Robert J. E. Westbrook;Tian Xia;Cheng Zhong;Jianxun Lu;Azzaya Khasbaatar;Kaikai Liu;Francis R. Lin;Sei-Hum Jang;Jie Zhang;Yuqing Li;Ying Diao;Zhanhua Wei;Hin-Lap Yip;David S. Ginger;Alex K.-Y. Jen
  • 通讯作者:
    Alex K.-Y. Jen
Gospel singing in the valley: An investigation into the hymnody and choral singing of the Lisu on the China-Burma/Myanmar border
山谷中的福音歌唱:中缅边境傈僳族赞美诗和合唱的调查
  • DOI:
    10.13016/m2fz1q
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Diao
  • 通讯作者:
    Ying Diao
Transcriptome, physiological and biochemical analysis of Triarrhena sacchariflora in response to flooding stress
  • DOI:
    doi.org/10.1186/s12863-019-0790-4
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Jia Wang;Han Sun;Jiajin Sheng;Surong Jin;Fasong Zhou1;Zhongli Hu;Ying Diao
  • 通讯作者:
    Ying Diao
Solution Coating of Pharmaceutical Nanothin Films and Multilayer Nanocomposites with Controlled Morphology and Polymorphism.
具有受控形态和多态性的药物纳米薄膜和多层纳米复合材料的溶液包衣。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Elizabeth M. Horstman;Prapti Kafle;Fengjiao Zhang;Yifu Zhang;P. Kenis;Ying Diao
  • 通讯作者:
    Ying Diao
Binding affinity of a small molecule to an amorphous polymer in a solvent. Part 1: free energy of binding to a binding site.
小分子与溶剂中无定形聚合物的结合亲和力。

Ying Diao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Diao', 18)}}的其他基金

EAGER: Fluid-directed Multiscale Assembly of Conjugated Polymers
EAGER:共轭聚合物的流体引导多尺度组装
  • 批准号:
    1641854
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
  • 批准号:
    10432488
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
ERI: Modeling Bacterial Microcompartment Assembly Using a Data-Driven Multiscale Framework
ERI:使用数据驱动的多尺度框架对细菌微区室组装进行建模
  • 批准号:
    2138620
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
  • 批准号:
    10615187
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
CAREER: Multiscale Simulations of Nanofluid Assembly for Smart Materials Design
职业:用于智能材料设计的纳米流体组装的多尺度模拟
  • 批准号:
    1944942
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
MRI: Development of a Multiscale Additive Manufacturing Instrument with Integrated 3D Printing and Robotic Assembly
MRI:开发具有集成 3D 打印和机器人装配功能的多尺度增材制造仪器
  • 批准号:
    1828355
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Multiscale Modeling of Peptide Self-Assembly with Experiment Directed Simulation
职业:通过实验引导模拟进行肽自组装的多尺度建模
  • 批准号:
    1751471
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Nanosystems Engineering Research Center for Directed Multiscale Assembly of Cellular Metamaterials with Nanoscale Precision: CELL-MET
纳米级精度细胞超材料定向多尺度组装纳米系统工程研究中心:CELL-MET
  • 批准号:
    1647837
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Cooperative Agreement
CAREER: Fundamental Understanding of Self-Assembly by Peptide-Polymer Conjugates in Creating Functional Biomaterials from Multiscale Simulations
职业:通过多尺度模拟创建功能性生物材料时对肽-聚合物缀合物自组装的基本理解
  • 批准号:
    1554508
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
EAGER: Fluid-directed Multiscale Assembly of Conjugated Polymers
EAGER:共轭聚合物的流体引导多尺度组装
  • 批准号:
    1641854
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CDS&E: Multiscale Dynamics Simulation of Self-Assembly and Transport in Nanoparticulate Systems
CDS
  • 批准号:
    1404482
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了