Net.Create: Using Network Analysis to Support Digital Humanities in Large History Classrooms

Net.Create:使用网络分析支持大型历史课堂中的数字人文

基本信息

  • 批准号:
    1848655
  • 负责人:
  • 金额:
    $ 29.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

This is an EAGER award to use Network Analysis to Support Digital Humanities Learning in Large History Classrooms. It is an innovative approach to network analysis that brings simultaneous multi-user predictive network data entry and live visualization into university history classrooms to support pedagogy and learning. The network tool is called Net.Create and it will provide an easy-to use interface and curricular materials that are designed from the ground up to be successfully implemented in a lecture classroom. Net.Create supports the collaborative generation of data as a method of interpreting evidence from multiple historical texts and then using network analysis to understand the complexity of historical interactions. Net.Create will also give practical guidance for how instructors in a variety of disciplines with similar complex interactions can adapt network visualization and analysis skills, typically the focus of STEM disciplines, to support students as they engage with humanities and social science learning.Network analysis is an increasingly popular and powerful computational tool for the analysis of large data sets. Digital historians have used these tools to represent and analyze historical contexts because they support scholars in looking at a broad range of connections between people, places, and events. While humanities pedagogues are optimistic that these capabilities also provide unique opportunities for supporting students in learning history, available tools do not support easy integration into humanities classrooms, and there is not yet empirical or theoretical support for how this might be accomplished effectively. As part of this integration, Net.Create aims to support novice history learners in recognizing how historical practices are grounded in argumentation rather than in single authoritative accounts by scaffolding students in creating and refining visualizations of historical corpora, allowing them to see these rich contexts, and then challenging them to develop and defend historical argument using these visualizations. Analysis will explore how the Net.Create tool and curricular activities contribute to students' historical practices and to student understanding of network analysis approaches, and whether these network-analysis practices result in new historical learning, retention, and understanding. The design of Net.Create is intended to support students in a wide range of contexts in engaging in challenging historical practices, and in appreciating how these practices are grounded in constructing arguments using evidence from the past. These approaches generalize beyond the 200 students of this initial pilot to students across the country via freely available tools, and across disciplines through an easy customization process. Net.Create and the associated curriculum also provide a unique opportunity to teach students to use humanities classrooms to learn cutting-edge digital approaches to scholarship which can apply across disciplinary boundaries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是一个EAGER奖使用网络分析,以支持大型历史教室的数字人文学习。它是一种创新的网络分析方法,将多用户预测性网络数据输入和实时可视化带入大学历史课堂,以支持教学和学习。该网络工具被称为Net.Create,它将提供一个易于使用的界面和课程材料,这些材料是从头开始设计的,可以在课堂上成功实施。创建支持数据的协作生成,作为一种解释来自多个历史文本的证据的方法,然后使用网络分析来理解历史交互的复杂性。创建还将提供实用指导,指导具有类似复杂交互的各种学科的教师如何调整网络可视化和分析技能,通常是STEM学科的重点,以支持学生参与人文和社会科学学习。网络分析是一种越来越受欢迎的强大计算工具,用于分析大型数据集。数字历史学家使用这些工具来表示和分析历史背景,因为它们支持学者研究人,地点和事件之间的广泛联系。虽然人文教师乐观地认为,这些能力也提供了独特的机会,支持学生学习历史,现有的工具不支持轻松融入人文课堂,还没有经验或理论支持,这可能是如何有效地完成。作为这种整合的一部分,Net.Create旨在帮助新手历史学习者认识到历史实践是如何扎根于论证而不是单一的权威性叙述的,方法是帮助学生创建和完善历史语料库的可视化,让他们看到这些丰富的背景,然后挑战他们使用这些可视化来发展和捍卫历史论点。分析将探讨如何净。创建工具和课程活动有助于学生的历史实践和学生对网络分析方法的理解,以及这些网络分析实践是否会导致新的历史学习,保留和理解。Net.Create的设计旨在支持学生在广泛的背景下参与具有挑战性的历史实践,并欣赏这些实践如何基于使用过去的证据构建论点。这些方法通过免费提供的工具,从最初试点的200名学生推广到全国各地的学生,并通过简单的定制过程跨学科推广。创建和相关的课程也提供了一个独特的机会,教学生使用人文课堂学习前沿的数字方法,以奖学金,可以适用于跨学科的界限。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响力审查标准的支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Net.Create: Network Visualization to Support Collaborative Historical Knowledge Building
Net.Create:支持协作历史知识构建的网络可视化
Mediating Collaboration in History with Network Analysis
通过网络分析调解历史上的合作
Noticing, Understanding, and Encouraging Positive Engagement with Collaborative History Learning
注意到、理解并鼓励积极参与历史协作学习
Net.Create: Network Analysis in Collaborative Co-Construction of Historical Context in a Large Undergraduate Classroom
Net.Create:本科大课堂历史语境协同共建的网络分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kalani Craig其他文献

Developing Historical Thinking in PBL Class Supported with Synergistic Scaffolding
在协同支架的支持下,在 PBL 课堂上发展历史思维
Using network visualizations to engage elementary students in locally relevant data literacy
使用网络可视化让小学生参与本地相关的数据素养
  • DOI:
    10.1108/ils-06-2023-0069
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Mengxi Zhou;Selena Steinberg;Christina Stiso;Joshua Danish;Kalani Craig
  • 通讯作者:
    Kalani Craig
Developing Historical Thinking in Large Lecture Classrooms Through PBL Inquiry Supported with Synergistic Scaffolding
通过协作支架支持的 PBL 探究在大型课堂中发展历史思维
Analog Tools in Digital History Classrooms: An Activity-Theory Case Study of Learning Opportunities in Digital Humanities
数字历史课堂中的模拟工具:数字人文学习机会的活动理论案例研究

Kalani Craig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Education and Outreach using the MicroPulse Differential Absorption Lidars (MPD) and NYSM Profiler Network before, during, and after the 2024 Total Solar Eclipse
在 2024 年日全食之前、期间和之后使用微脉冲差分吸收激光雷达 (MPD) 和 NYSM 剖面仪网络进行教育和推广
  • 批准号:
    2345420
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Decentralizing Trust in Data-Centric In-Network Computing using Collaborative Secure Computation
使用协作安全计算分散对以数据为中心的网络内计算的信任
  • 批准号:
    24K20769
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NeTS: Small: Revisiting Network Algorithmics using the CRAM Model
NeTS:小型:使用 CRAM 模型重新审视网络算法
  • 批准号:
    2333587
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Network Calming - Using Smart Sensors to Improve Water Asset Performance
网络平静 - 使用智能传感器提高水资产绩效
  • 批准号:
    DP230101513
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Discovery Projects
A Study on Explainable Recommender Systems using Personal Network
使用个人网络的可解释推荐系统研究
  • 批准号:
    23H03504
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Technology to capture latent relationships using network structure and its applications
利用网络结构捕获潜在关系的技术及其应用
  • 批准号:
    23K01632
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Using a multilayer plant-pollinator and fruit-frugivore network along a defaunation gradient to understand the combined influence of mutualisms on forest communities
职业:沿着动物区系丧失梯度使用多层植物传粉者和水果食果动物网络来了解互利共生对森林群落的综合影响
  • 批准号:
    2335783
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Continuing Grant
Innovative In-Sensor Computing Devices Using Random Network Structure Reservoirs
使用随机网络结构储层的创新传感器内计算设备
  • 批准号:
    23K17864
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The Social-Medical Network: Using a Network Approach to Explore the Integration of Informal and Formal Care Networks of Older Adults
社会医疗网络:利用网络方法探索老年人非正式和正式护理网络的整合
  • 批准号:
    10724756
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
Targeting adolescent depression symptoms using network-based real-time fMRI neurofeedback and mindfulness meditation
使用基于网络的实时功能磁共振成像神经反馈和正念冥想针对青少年抑郁症状
  • 批准号:
    10581837
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了