Collaborative Research: Predicting post-wildfire sedimentation of reservoirs: probabilistic modeling of debris flow generation and downstream sediment routing

合作研究:预测水库野火后沉积:泥石流生成和下游沉积路径的概率模型

基本信息

项目摘要

In the United States, forested lands provide water supply for two-thirds of the population. However, in the decades since most water infrastructure was constructed in the western U.S., the burned area, frequency, and severity of wildfires has increased considerably. While wildfires can have short-term impacts on the quantity and quality of water supply, the erosion that occurs after severe burns can also deliver significant amounts of sediment to rivers and downstream reservoirs, reducing the long-term storage capacity of water supplies. Further, with projected future increases in wildfire, there will be increases in river sediment. Thus, in this project the researchers will develop new computer-based modeling tools capable of identifying and quantifying the risk that post-wildfire erosion poses to downstream water infrastructure. The first application of this modeling framework will be the water supply reservoirs throughout Utah, one of the driest states in the U.S., where the vulnerability of each reservoir will be quantified as to the erosion and sedimentation risk posed by wildfire. Similar to dammed reservoirs across the nation, sedimentation in Utah reservoirs is a growing concern for aging water infrastructure, even before accounting for the projected increases in future wildfire. Finally, the researchers will integrate their model into online, open-source programs, making these resources available to any person or agency interested in applying the model to other states or regions. The deliverables of this project will provide critical information and tools for improved and more targeted forest management, help identify and protect vulnerable water resources, and address crucial knowledge gaps for predicting downstream impacts from post-wildfire erosion. Collaborating across two universities, this project will provide support for one post-doctoral researcher (PI Murphy), two PhD students, and a minimum of six undergraduate students to train and develop their skills in hydrology, geomorphology, data analysis and management, and science communication. This project will advance fundamental knowledge critical for predicting the locations and timing of post-wildfire sediment delivery to downstream water infrastructure. The researchers will link new and existing models that: 1) predict the locations and magnitudes of post-wildfire erosion, 2) route post-wildfire sediment inputs downstream through river networks in a physics-based and hydro-geomorphically sensitive manner, and 3) determine a range of potential volumetric sediment inputs to downstream reservoirs under a range of wildfire conditions. Applying this new modeling framework to the 133 major reservoirs throughout Utah, this project will answer four key research questions: 1) Which water supply reservoirs in Utah are most vulnerable to post-wildfire erosion? 2) What is the time lag between occurrence of a wildfire and loss of reservoir storage downstream? 3) Which landscape, fire, hydrologic, and vegetation characteristics exert the strongest control on the upstream storage vs. delivery of post-fire sediment to reservoirs? 4) What landscape, fire and river network attributes control the relative increase in post-wildfire sediment yields above background yields? Through this analysis, the researchers will specifically assess the influence of sediment connectivity on reservoir vulnerability, as well as the contribution of coarse sediment inputs to the reductions in reservoir storage over longer transport timescales. Given the complex ownership and management of dams, they will engage a stakeholder advisory group that spans the diverse range of ownership and includes public utilities departments, state and federal forest management agencies, and dam operators. Further, they will work with the Community Surface Dynamics Modeling System (CSDMS) to integrate their models into open-source platforms, and create a public platform to host the project datasets, educational materials, technical reports, and publications. This project represents research at the frontier of integrated geosciences, and this new modeling framework fills a critical gap regarding the tools needed to assess urgent societal concerns regarding wildfire and water security.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,林地为三分之二的人口提供供水。然而,自从大多数供水基础设施在美国西部建成以来的几十年里,野火的烧毁面积、频率和严重程度都大幅增加。虽然野火会对供水的数量和质量产生短期影响,但严重燃烧后发生的侵蚀也会向河流和下游水库输送大量沉积物,从而降低供水的长期储存能力。此外,随着预计未来野火的增加,河流沉积物也会增加。因此,在这个项目中,研究人员将开发新的基于计算机的建模工具,能够识别和量化野火后侵蚀对下游水基础设施造成的风险。该建模框架的第一个应用将是美国最干旱的州之一犹他州的供水水库,每个水库的脆弱性将根据野火造成的侵蚀和沉积风险进行量化。与全国各地的筑坝水库类似,犹他州水库的沉积物日益引起人们对老化水基础设施的担忧,甚至在考虑未来野火的预计增加之前也是如此。最后,研究人员将把他们的模型整合到在线开源项目中,使这些资源可供任何有兴趣将该模型应用于其他州或地区的个人或机构使用。该项目的可交付成果将为改进和更有针对性的森林管理提供关键信息和工具,帮助识别和保护脆弱的水资源,并解决预测野火侵蚀后下游影响的关键知识差距。该项目将在两所大学之间合作,为一名博士后研究员(PI Murphy)、两名博士生和至少六名本科生提供支持,以培训和发展他们在水文学、地貌学、数据分析和管理以及科学传播方面的技能。该项目将推进对于预测野火后沉积物输送到下游水基础设施的位置和时间至关重要的基础知识。研究人员将把新的和现有的模型联系起来:1)预测野火后侵蚀的位置和程度,2)以基于物理和水文地貌敏感的方式通过河网将野火后沉积物输入下游的路线确定,3)确定在一系列野火条件下向下游水库输入的一系列潜在体积沉积物。该项目将这一新的建模框架应用于犹他州的 133 个主要水库,将回答四个关键研究问题:1) 犹他州的哪些供水水库最容易受到野火后的侵蚀? 2) 野火发生与下游水库蓄水损失之间的时间间隔是多少? 3) 哪些景观、火灾、水文和植被特征对上游储存与火后沉积物输送到水库的影响最强? 4) 哪些景观、火灾和河网属性控制着野火后沉积物产量相对于背景产量的相对增加?通过这项分析,研究人员将具体评估沉积物连通性对水库脆弱性的影响,以及粗沉积物输入对较长运输时间尺度内水库蓄水量减少的贡献。鉴于水坝所有权和管理的复杂性,他们将聘请一个利益相关者咨询小组,该小组涵盖不同的所有权范围,包括公用事业部门、州和联邦森林管理机构以及水坝运营商。此外,他们将与社区表面动力学建模系统(CSDMS)合作,将其模型集成到开源平台中,并创建一个公共平台来托管项目数据集、教育材料、技术报告和出版物。该项目代表了综合地球科学的前沿研究,这一新的建模框架填补了评估野火和水安全等紧迫社会问题所需工具的关键空白。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulated Dynamics of Mixed Versus Uniform Grain Size Sediment Pulses in a Gravel‐Bedded River
  • DOI:
    10.1029/2021jf006194
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Ahammad;J. Czuba;A. Pfeiffer;B. Murphy;P. Belmont
  • 通讯作者:
    M. Ahammad;J. Czuba;A. Pfeiffer;B. Murphy;P. Belmont
Control of flow sequence and spatial distribution of debris flow input on river network modeling
河网建模中泥石流输入的流序和空间分布控制
USUAL Watershed Tools: A new geospatial toolkit for hydro-geomorphic delineation
USUAL 流域工具:用于水文地貌描绘的新地理空间工具包
  • DOI:
    10.1016/j.envsoft.2022.105576
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    David, Scott R.;Murphy, Brendan P.;Czuba, Jonathan A.;Ahammad, Muneer;Belmont, Patrick
  • 通讯作者:
    Belmont, Patrick
Watershed scale impact of upstream sediment supply on the mainstem of a river network
上游泥沙供应对河网干流的流域尺度影响
NetworkSedimentTransporter: A Landlab component for bed material transport through river networks
  • DOI:
    10.21105/joss.02341
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Pfeiffer;K. Barnhart;J. Czuba;E. Hutton
  • 通讯作者:
    A. Pfeiffer;K. Barnhart;J. Czuba;E. Hutton
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Czuba其他文献

Jonathan Czuba的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Czuba', 18)}}的其他基金

Understanding the physical processes controlling the amount of fine sediment and gravel embeddedness in streambeds
了解控制河床细粒沉积物和砾石嵌入量的物理过程
  • 批准号:
    2243003
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Role of lithologic variability in controlling downstream channel response to sediment pulses
合作研究:岩性变异在控制下游河道对沉积物脉冲响应中的作用
  • 批准号:
    2138505
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330759
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
  • 批准号:
    2343204
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
  • 批准号:
    2343203
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330760
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
  • 批准号:
    2308410
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
  • 批准号:
    2310356
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: MODEL ENABLED MACHINE LEARNING (MnML) FOR PREDICTING ECOSYSTEM REGIME SHIFTS
合作研究:用于预测生态系统制度转变的模型机器学习 (MnML)
  • 批准号:
    2233983
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Predicting Micro to Macro-scale Hot-spot and Hot-moment dynamics in Arctic Tundra Ecosystems
合作研究:预测北极苔原生态系统的微观到宏观热点和热点动态
  • 批准号:
    2311075
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了