CRII: III: A Scalable Probabilistic Model Selection Method for Deep Learning in Gene-Protein Network Inference and Integration
CRII:III:基因-蛋白质网络推理和集成中深度学习的可扩展概率模型选择方法
基本信息
- 批准号:1850492
- 负责人:
- 金额:$ 17.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Detailed characterization of interactions between individual genes and proteins has been one of the focuses of biological research, since these interactions control cellular processes involving complicated cascades of biochemical reactions and signaling pathways. Dysregulation of any component of these pathways can lead to a broad spectrum of human pathologies including cancer, cardiovascular disease, neurodegenerative conditions, and metabolic diseases. Deep learning techniques, which is attributed to the most recent advances in artificial intelligence and machine learning, have emerged and many studies have tried to construct and analyze gene/protein interactions at a genome/proteome-wide scale to describe their global characteristics. However, the heterogeneous nature of the biological data and their continuous evolution pose a unique challenge to the architecture design of deep neural networks. The state-of-the-art solutions heavily rely on expertise, heuristics, and experimentation, and are time-consuming and not scalable. This research proposes to enable deep neural networks to automatically go through a qualitative growth to accommodate richer information from new heterogenous data as they are accumulating. This project will provide powerful novel computational tools to discover and target gene-protein interactions driving regulatory diseases such as cancer, diabetes and neurological disorders, while gaining insight into the fundamental principles behind cellular information processing.This project will focus on developing scalable probabilistic model selection approaches to infer deep neural network architectures for gene-protein interaction network inference and integration. The project will design efficient inference algorithms for the proposed model selection approach to enable its translation into a deployable tool for use by biologists. The researchers will develop novel principled model selection methods to infer the most plausible architectures of deep neural networks warranted by the heterogenous biological data. By modeling the hypothesis space of neural network architectures as stochastic processes, the proposed method enables neural network architectures to evolve according to the biological data; to design and implement efficient techniques to make use of the inference computationally tractable. The project proposes to evaluate the marginal likelihoods for preference to the alternatives approximately based on variational methods. The investigator will compare the performance of the deep neural networks whose architectures are learned with the proposed model selection method with the state-of-the-art methods on networks and functional annotations of eukaryotic organism S. cerevisiae and human cells by treating protein function prediction as a multi-label classification problem, and measuring the performance with two complementary approaches: cross-validation and temporal holdout validation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
个体基因和蛋白质之间的相互作用的详细表征一直是生物学研究的焦点之一,因为这些相互作用控制涉及复杂的生化反应和信号通路级联的细胞过程。这些途径的任何组分的失调可导致广谱的人类病理学,包括癌症、心血管疾病、神经退行性病症和代谢疾病。由于人工智能和机器学习的最新进展,已经出现了深度学习技术,许多研究试图在基因组/蛋白质组范围内构建和分析基因/蛋白质相互作用,以描述它们的全局特征。然而,生物数据的异质性及其持续进化对深度神经网络的架构设计提出了独特的挑战。最先进的解决方案严重依赖于专业知识、经验和实验,并且耗时且不可扩展。这项研究提出,使深度神经网络能够自动经历质的增长,以适应新的异质数据中积累的更丰富的信息。该项目将提供强大的新型计算工具,以发现和靶向基因-蛋白质相互作用驱动的调控性疾病,如癌症,糖尿病和神经系统疾病,同时深入了解细胞信息处理背后的基本原理。该项目将专注于开发可扩展的概率模型选择方法,以推断用于基因-蛋白质相互作用网络推理和集成的深度神经网络架构。该项目将为拟议的模型选择方法设计有效的推理算法,使其能够转化为可部署的工具,供生物学家使用。研究人员将开发新的原则性模型选择方法,以推断由异质生物数据保证的最合理的深度神经网络架构。通过将神经网络架构的假设空间建模为随机过程,所提出的方法使神经网络架构能够根据生物数据进行进化;设计和实现有效的技术来利用计算上易于处理的推理。该项目提出了评估的边际似然偏好的替代品近似基于变分方法。研究人员将比较其架构通过所提出的模型选择方法学习的深度神经网络的性能,以及真核生物S的网络和功能注释的最新方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint Inference for Neural Network Depth and Dropout Regularization
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:C. KishanK.;Rui Li;MohammadMahdi Gilany
- 通讯作者:C. KishanK.;Rui Li;MohammadMahdi Gilany
Joint Inference for Neural Network Depth and Dropout Regularizatio
神经网络深度和 Dropout 正则化的联合推理
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:KC, Kishan;Li, Rui;Gilany, Mehdi
- 通讯作者:Gilany, Mehdi
SFusion: Self-attention Based N-to-One Multimodal Fusion Block
- DOI:10.1007/978-3-031-43895-0_15
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Ze Liu;Jia Wei;Rui Li;Jianlong Zhou
- 通讯作者:Ze Liu;Jia Wei;Rui Li;Jianlong Zhou
Interpretable Structured Learning with a Sparse Sequence Encoder for Prediction Analysis on Protein-Protein Interaction
使用稀疏序列编码器进行可解释的结构化学习,用于蛋白质-蛋白质相互作用的预测分析
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:KC, Kishan;Li, Rui;Cui, Feng;Haake, Anne R
- 通讯作者:Haake, Anne R
AdaVAE: Bayesian Structural Adaptation for Variational Autoencoders
AdaVAE:变分自动编码器的贝叶斯结构适应
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Regmi, P;Li, R.
- 通讯作者:Li, R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui Li其他文献
Semi-self-adaptive harmony search algorithm
半自适应和声搜索算法
- DOI:
10.1007/s11047-017-9614-5 - 发表时间:
2017-01 - 期刊:
- 影响因子:2.1
- 作者:
Xinchao Zhao;Zhaohua Liu;Junling Hao;Rui Li;Xingquan Zuo - 通讯作者:
Xingquan Zuo
Light interaction in the application of home water purification system
光交互在家庭净水系统中的应用
- DOI:
10.5004/dwt.2018.22782 - 发表时间:
2018 - 期刊:
- 影响因子:1.1
- 作者:
Rui Li - 通讯作者:
Rui Li
A new image encryption algorithm based on CML and DNA sequence
一种基于CML和DNA序列的新型图像加密算法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.9
- 作者:
Xingyuan Wang;Yutao Hou;Shibing Wang;Rui Li - 通讯作者:
Rui Li
LIDAR Scanning as an Advanced Technology in Physical Hydraulic Modelling: The Stilling Basin Example
激光雷达扫描作为物理水力建模的先进技术:消力池示例
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:5
- 作者:
Rui Li;Kristen D. Splinter;S. Felder - 通讯作者:
S. Felder
Time-varying free-surface properties of hydraulic jumps: a comparative analysis of experimental methods
水跃时变自由表面特性:实验方法的比较分析
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Rui Li;Kristen D. Splinter;S. Felder - 通讯作者:
S. Felder
Rui Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rui Li', 18)}}的其他基金
ERI: An Emotion-Based Robotic Behavior Optimization System for Comfortable and Friendly Human-Robot Collaboration
ERI:基于情感的机器人行为优化系统,实现舒适友好的人机协作
- 批准号:
2301678 - 财政年份:2023
- 资助金额:
$ 17.19万 - 项目类别:
Standard Grant
CAREER: Co-evolution of Machine Intelligence and Continuous Information
职业:机器智能和连续信息的共同进化
- 批准号:
2045804 - 财政年份:2021
- 资助金额:
$ 17.19万 - 项目类别:
Continuing Grant
SBIR Phase II: Locating a breast tumor with sub-millimeter accuracy to improve the precision of surgery
SBIR二期:以亚毫米精度定位乳腺肿瘤,提高手术精度
- 批准号:
1830918 - 财政年份:2019
- 资助金额:
$ 17.19万 - 项目类别:
Standard Grant
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 17.19万 - 项目类别:
Standard Grant
In vivo Perturb-map: scalable genetic screens with single-cell and spatial resolution in intact tissues
体内扰动图:在完整组织中具有单细胞和空间分辨率的可扩展遗传筛选
- 批准号:
10578616 - 财政年份:2023
- 资助金额:
$ 17.19万 - 项目类别:
III: Medium: CARE: Interactive Systems for Scalable, Causal Data Science
III:媒介:CARE:可扩展因果数据科学的交互式系统
- 批准号:
2312561 - 财政年份:2023
- 资助金额:
$ 17.19万 - 项目类别:
Continuing Grant
High-throughput Spheroid Bioprinting Technology for Scalable Fabrication of Tissues
用于可扩展组织制造的高通量球体生物打印技术
- 批准号:
10744937 - 财政年份:2023
- 资助金额:
$ 17.19万 - 项目类别:
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
- 批准号:
10889303 - 财政年份:2023
- 资助金额:
$ 17.19万 - 项目类别:
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2341725 - 财政年份:2023
- 资助金额:
$ 17.19万 - 项目类别:
Standard Grant
Massively scalable 3D electrophysiology and two-photon imaging in freely-moving animals
自由移动动物的大规模可扩展 3D 电生理学和双光子成像
- 批准号:
10687565 - 财政年份:2023
- 资助金额:
$ 17.19万 - 项目类别:
A Scalable Continuous Production Platform for Large-Scale Manufacturing of Therapeutic Exosomes
用于大规模生产治疗性外泌体的可扩展连续生产平台
- 批准号:
10739425 - 财政年份:2023
- 资助金额:
$ 17.19万 - 项目类别:
Scalable single-cell workflow for multiomic analyses of chromatin interactions, accessibility, gene expression and cell surface proteins to unravel mechanisms of cellular diversity
可扩展的单细胞工作流程,用于染色质相互作用、可及性、基因表达和细胞表面蛋白的多组学分析,以揭示细胞多样性的机制
- 批准号:
10604121 - 财政年份:2023
- 资助金额:
$ 17.19万 - 项目类别:
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2212508 - 财政年份:2022
- 资助金额:
$ 17.19万 - 项目类别:
Standard Grant