The Reliability of Survey Data: The Effects of Question Content, Context and Form

调查数据的可靠性:问题内容、背景和形式的影响

基本信息

  • 批准号:
    1850852
  • 负责人:
  • 金额:
    $ 30.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Vast amounts of survey data are collected each year for many purposes, including the collection of information for government use, public opinion and election surveys, advertising and marketing research, as well as basic research in the social and economic sciences. Because surveys are so widely used, it is essential that we establish a knowledge base about the measurement quality of survey data and the attributes of questions that produce the best data. Science well understands the reliability of multi-item measures, or scales, commonly used in such research. But we know much less about the quality of single-item survey questions. New data resources and modeling strategies now make it possible to assess the reliability or consistency of measurement for these survey measures. Based on statistical models for evaluating reliability of measurement, this project draws upon the insights from the information gathering process in surveys. The results of this research will provide practical suggestions that will improve the quality of survey data, thus improving survey research generally. The project will develop a publicly available website to allow all survey researchers to investigate question reliability of a large number of commonly used survey questions. Because surveys are used broadly by science, government and the private sector to inform many policy and economic decisions, improved information about survey measures will contribute to the health and well being of U. S. society across multiple sectors and over time.Because surveys are so widely used, it is essential that we establish a knowledge base about the measurement quality of survey data and the attributes of questions that produce the best results. In order to accomplish these aims, this project develops a set of meta-data containing information for roughly 1200 single-item questions representative of typical questions used in social science surveys. The database of survey questions, developed on the basis of ten nationally (or regionally) representative panel studies including the General Social Surveys, the Health and Retirement Study, the National Election Studies, contains estimates of question-specific reliabilities, along with detailed coding of attributes of the questions, such as their content, response formats, and question length, which can be used to evaluate the optimal properties of survey questions with respect to levels of measurement error. Through an analysis of the reliability information and the attributes of survey questions from these large-scale panel studies, the study focuses on three major elements of questionnaire construction: content, context and form. Statistical analysis will involve use of auto-regressive or Quasi-Markov simplex modeling techniques. The resulting meta-data set will be archived with the Inter-university Consortium for Political and Social Research (ICPSR) and other suitable data archives. In addition, the project will post key elements of these data on a publicly available website, along with images of questions and question context involved, in a manner that allows users to search, filter or query the data base in investigating the reliability of types of survey questions of interest. These findings will contribute important information to the multidisciplinary field of survey methodology, which informs scholars in disciplines including sociology, political science, economics, communication, psychology, law, public health, and public policy, as well as actors in the private and governmental sectors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每年收集大量的调查数据用于多种目的,包括收集政府使用的信息,民意和选举调查,广告和市场研究,以及社会和经济科学的基础研究。由于调查被广泛使用,我们必须建立一个关于调查数据的测量质量和产生最佳数据的问题属性的知识库。科学很好地理解了多项目措施的可靠性,或规模,通常用于此类研究。 但我们对单项调查问题的质量知之甚少。新的数据资源和建模策略现在可以评估这些调查措施的可靠性或一致性。该项目以评估测量可靠性的统计模型为基础,借鉴了调查中信息收集过程的见解。本研究的结果将提供切实可行的建议,将提高调查数据的质量,从而提高调查研究的普遍。该项目将开发一个公开网站,使所有调查研究人员能够调查大量常用调查问题的可靠性。 由于调查被科学界、政府和私营部门广泛用于为许多政策和经济决策提供信息,有关调查措施的改进信息将有助于美国人民的健康和福祉。S.由于调查被广泛使用,我们必须建立一个关于调查数据的测量质量和产生最佳结果的问题属性的知识库。为了实现这些目标,本项目开发了一套元数据,其中包含大约1200个单项问题的信息,这些问题代表了社会科学调查中使用的典型问题。调查问题的数据库,在十个国家的基础上开发,(或区域)代表性小组研究,包括一般社会调查、健康和退休研究、国家选举研究,包含对特定问题可靠性的估计,沿着问题属性的详细编码,如内容、回答格式和问题长度,其可用于相对于测量误差水平来评估调查问题的最佳属性。通过对大规模追踪调查问卷的信度信息和问卷属性的分析,本研究着重探讨了问卷构建的三大要素:内容、语境和形式。统计分析将涉及使用自回归或准马尔可夫单纯形建模技术。由此产生的元数据集将与大学间政治和社会研究联合会(ICPSR)和其他合适的数据档案馆存档。此外,该项目将把这些数据的关键要素连同所涉问题和问题背景的图像沿着张贴在一个公开网站上,使用户能够搜索、过滤或查询数据库,以调查感兴趣的各类调查问题的可靠性。这些发现将为调查方法的多学科领域提供重要信息,为社会学、政治学、经济学、传播学、心理学、法律、公共卫生和公共政策等学科的学者提供信息,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值进行评估来支持和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duane Alwin其他文献

Duane Alwin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duane Alwin', 18)}}的其他基金

Archiving Information on the Quality of Survey Measurement
归档有关调查测量质量的信息
  • 批准号:
    1331454
  • 财政年份:
    2013
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
The Reliability of Survey Data
调查数据的可靠性
  • 批准号:
    9710403
  • 财政年份:
    1997
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
American Perceptions of Justice: An East-West CollaborativeStudy
美国对正义的看法:东西方合作研究
  • 批准号:
    9023954
  • 财政年份:
    1991
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
A Replication of Lenski's Detroit Area Study
兰斯基底特律地区研究的复制
  • 批准号:
    8712119
  • 财政年份:
    1987
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Harvesting Long-term Survey Data to Develop Zooplankton Distribution Models for the Antarctic Peninsula
合作研究:收集长期调查数据以开发南极半岛浮游动物分布模型
  • 批准号:
    2203177
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
Survey Data Collection Methods Collaboration: Securing the Future of Social Surveys
调查数据收集方法协作:确保社会调查的未来
  • 批准号:
    ES/X014150/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Research Grant
"Improving Understanding Of Weight Stigma With Causal Inference Methods And General Population Survey Data".
“利用因果推理方法和一般人口调查数据提高对体重耻辱的理解”。
  • 批准号:
    ES/X000486/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Research Grant
Practical development of global standard technology in archaeological survey using multi-satellite data
多卫星数据考古调查全球标准技术的实用化发展
  • 批准号:
    23H00718
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Urbanization, educational expansion and income inequality in Asian developing countries: An analysis based on household survey data
亚洲发展中国家的城市化、教育扩张与收入不平等:基于家庭调查数据的分析
  • 批准号:
    23K01409
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Empirical study on the evasion method of characteristic biases in social science data collection by Web survey
网络调查社会科学数据采集特征偏差规避方法实证研究
  • 批准号:
    23K17576
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study on data lifecycle management for open access to social survey data
社会调查数据开放获取的数据生命周期管理研究
  • 批准号:
    23K17577
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
RAISE: IHBEM: Integrating Traditional Survey and Digital Sociobehavioral Data into Infectious Disease Models for Long-Term Forecasting
RAISE:IHBEM:将传统调查和数字社会行为数据整合到传染病模型中进行长期预测
  • 批准号:
    2230125
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Harvesting Long-term Survey Data to Develop Zooplankton Distribution Models for the Antarctic Peninsula
合作研究:收集长期调查数据以开发南极半岛浮游动物分布模型
  • 批准号:
    2203176
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
CDS&E: A Modern Toolkit to Enhance the Scientific Productivity of Optical Survey Data
CDS
  • 批准号:
    2307070
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了