Collaborative Research: Dynamic Roots as the Biophysical Link Between Deep Moisture and the Atmosphere
合作研究:动态根作为深层水分与大气之间的生物物理联系
基本信息
- 批准号:1852709
- 负责人:
- 金额:$ 36.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plants play an important role in moving water across the land surface between the atmosphere above and the soil below. Some plants can extend their roots substantially below the surface to take advantage of ground water, giving them a moisture reservoir that persists through dry seasons and droughts. When plants tap into this reservoir they transpire moisture through their leaves, providing a source of moisture to the atmosphere at a time when the air may be at its driest. The extent to which this transpired groundwater influences meteorological conditions such as precipitation, cloudiness, and atmospheric stability is not known, nor is its dependence on region, season, and other factors.The transpiration of groundwater involves a complex set of biological and physical processes which are difficult to observe and simulate. But the PIs have developed a scheme in which the bulk effect of these processes can be approximated using two observationally-motivated assumptions. First, the extent to which plants extend their roots to tap groundwater depends on their position relative to the local topography. In dry or seasonally dry climates plants on a hilltop are typically too high above the water table to effectively access groundwater, so we can assume that they rely exclusively on near-surface soil moisture. At the valley floor the water table can be so close to the surface that plant roots have to be shallow to avoid excessive salinity and waterlogging, so they also rely exclusively on near-surface moisture. Thus maximum groundwater uptake occurs at mid-hillslope locations, and groundwater usage depends on the Height Above Nearest Drainage (HAND). The PIs have developed a "giant hillslope" method to quantify this dependence in terms of a five-bin representation of small-scale HAND topography.Second, roots respond dynamically to the vertical profile of soil water. The PIs argue that root dynamics can be simply represented by assuming that roots actively extend to reach available groundwater, taking up water from whatever level offers the greatest moisture access for the least effort. This assumption is formalized using a scheme in which the transport of moisture through roots is analogous to the movement of electric current in a circuit: the roots act as "wires", through which a "current" of moisture flows from a specific soil layer to the plant leaves, driven by the "voltage" difference (i.e. water potential difference) between plant leaves and the soil layer tapped by the roots. The flow of moisture from a soil layer to the surface is then given by the ratio of the layer-to-leaves voltage drop to the resistance of the wire, in exact analogy to Ohm's law (electric current equals voltage divided by resistance).The PIs implement their root-groundwater scheme in the Noah land-surface model, which is coupled to the Weather Research and Forecasting (WRF) model to form a coupled land-atmosphere model. The model is then used to test the impact of groundwater transpiration on the continental-scale hydrological cycle. Among the scientific questions to be addressed is the extent to which groundwater transpiration promotes precipitation, both by making a substantial contribution to the moisture available for precipitation, and by reducing atmospheric stability.The research has societal value due to the importance of the hydrological cycle for water resources. The work is of particular value for building bridges between the research communities concerned with the separate but closely connected fields of land surface hydrology, continental-scale hydroclimate, and plant ecology. The implementation of the new scheme in the WRF model will make it available for operational use, as WRF is widely used for weather forecasting. The PIs also conduct educational and outreach activities in K-12 schools, and the project supports two graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物在将水分在陆地表面的大气层和土壤之间输送方面发挥着重要作用。 一些植物可以将它们的根延伸到地表以下,以利用地下水,给它们一个水分库,在干旱季节和干旱中持续存在。 当植物进入这个水库时,它们通过叶子散发水分,在空气最干燥的时候为大气提供水分来源。地下水蒸腾作用对降水、云量和大气稳定性等气象条件的影响程度尚不清楚,也不清楚其与地区、季节和其他因素的关系。地下水蒸腾作用涉及一系列复杂的生物和物理过程,难以观测和模拟。但是PI已经开发了一种方案,其中这些过程的整体效应可以使用两个观察动机假设来近似。首先,植物延伸根系汲取地下水的程度取决于它们相对于当地地形的位置。 在干燥或季节性干燥的气候中,山顶上的植物通常高于地下水位,无法有效地获取地下水,因此我们可以假设它们完全依赖于近地表的土壤水分。 在谷底,地下水位可能非常接近地表,植物的根系必须很浅,以避免过多的盐分和水涝,因此它们也完全依赖于近地表的水分。 因此,最大的地下水吸收发生在山坡中部的位置,地下水的使用取决于最近的排水高度(HAND)。PI已经开发了一种“巨大的山坡”的方法来量化这种依赖性的一个小规模的HAND地形的五箱表示。第二,根动态响应土壤水分的垂直剖面。 PI认为,根系动态可以简单地表示为假设根积极延伸到可用的地下水,从任何水平的水提供最大的水分访问最少的努力。这种假设是正式使用的方案,其中通过根的水分运输类似于电路中的电流的移动:根作为“电线”,通过它的水分的“电流”从特定的土壤层流到植物叶片,由植物叶片和土壤层之间的“电压”差(即水电位差)驱动。从土壤层到地表的水分流量由层到叶的电压降与导线电阻之比给出,与欧姆定律(电流等于电压除以电阻)完全类似。PI在诺亚陆面模型中实现了其根-地下水方案,该方案与天气研究和预报(WRF)模型耦合,形成耦合的陆-气模型。 然后,该模型被用来测试大陆尺度的水文循环的地下水蒸腾的影响。 其中一个有待解决的科学问题是地下水蒸腾作用促进降水的程度,既通过对降水可用的水分做出实质性贡献,又通过降低大气稳定性。由于水文循环对水资源的重要性,这项研究具有社会价值。这项工作是特别有价值的研究社区之间的桥梁,关注独立的,但密切相关的领域,陆地表面水文,大陆尺度水文气候,植物生态学。 在WRF模式中实施新方案将使其可用于业务用途,因为WRF广泛用于天气预报。 PI还在K-12学校开展教育和外展活动,该项目支持两名研究生。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francina Dominguez其他文献
The residence time of water vapour in the atmosphere
水蒸气在大气中的停留时间
- DOI:
10.1038/s43017-021-00181-9 - 发表时间:
2021-07-13 - 期刊:
- 影响因子:71.500
- 作者:
Luis Gimeno;Jorge Eiras-Barca;Ana María Durán-Quesada;Francina Dominguez;Ruud van der Ent;Harald Sodemann;Ricardo Sánchez-Murillo;Raquel Nieto;James W. Kirchner - 通讯作者:
James W. Kirchner
The South Atlantic Ocean as a moisture source region and its relation with precipitation in South America
- DOI:
10.1007/s00382-022-06653-y - 发表时间:
2023-01-17 - 期刊:
- 影响因子:3.700
- 作者:
Inés M. Leyba;Silvina A. Solman;Martín Saraceno;J. Alejandro Martinez;Francina Dominguez - 通讯作者:
Francina Dominguez
Advancing South American Water and Climate Science Through Multi-Decadal Convection-Permitting Modeling
通过数十年对流允许模型推进南美水和气候科学
- DOI:
10.1175/bams-d-22-0226.1 - 发表时间:
2023 - 期刊:
- 影响因子:8
- 作者:
Francina Dominguez;Roy Rasmussen;Changhai Liu;K. Ikeda;A. Prein;A. Varble;Paola A. Arias;Julio Bacmeister;M. Bettolli;Patrick Callaghan;Leila M. V. Carvalho;Christopher L. Castro;Fei Chen;Divyansh Chug;Kwok Pan;Sun Chun;Aiguo Dai;Luminita Danaila;R. D. Rocha;E. Nascimento;Erin Dougherty;J. Dudhia;T. Eidhammer;Zhe Feng;Lluís Fita;Rong Fu;Julian Giles;Harriet Gilmour;Kate Halladay;Yongjie Huang;Angela Maylee;Iza Wong;Miguel Lagos;Charles Jones;Jorge Llamocca;M. Llopart;J. A. Martínez;J. C. Martinez;J. Minder;Monica Morrison;Z. L. Moon;Y. Mu;Richard B. Neale;K. N. Ocasio;Sujan Pal;Erin Potter;Germán Poveda;F. Puhales;Kristen L. Rasmussen;A. Rehbein;R. Rios‐Berrios;C. B. Risanto;Alan Rosales;L. Scaff;A. Seimon;Marcelo Somos;Yang Tian;Peter van Oevelen;D. Veloso;L. Xue;Timothy Schneider - 通讯作者:
Timothy Schneider
Mesoscale structures in the Orinoco basin during an extreme precipitation event in the tropical Andes
热带安第斯山脉极端降水事件期间奥里诺科盆地的中尺度结构
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.9
- 作者:
J. A. Martinez;Paola A. Arias;Francina Dominguez;A. Prein - 通讯作者:
A. Prein
Convection-permitting climate simulations over South America: Experimentation during different phases of ENSO
南美洲允许对流的气候模拟:厄尔尼诺 - 南方涛动(ENSO)不同阶段期间的实验
- DOI:
10.1016/j.atmosres.2025.107936 - 发表时间:
2025-04-15 - 期刊:
- 影响因子:4.400
- 作者:
Changhai Liu;Kyoko Ikeda;Andreas Prein;Lucia Scaff;Francina Dominguez;Roy Rasmussen;Yongjie Huang;Jimy Dudhia;Wei Wang;Fei Chen;Lulin Xue;Lluís Fita;Miguel Lagos-Zúñiga;Waldo Lavado-Casimiro;Mariano Masiokas;Franciano Puhales;Leidy Johanna Yepes - 通讯作者:
Leidy Johanna Yepes
Francina Dominguez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francina Dominguez', 18)}}的其他基金
RELAMPAGO Hydrometeorology Component: Land Surface Controls on Heavy Precipitation and Flooding in the Carcarana River Basin, Argentina
RELAMPAGO 水文气象部分:阿根廷卡尔卡拉纳河流域强降水和洪水的地表控制
- 批准号:
1641167 - 财政年份:2017
- 资助金额:
$ 36.63万 - 项目类别:
Continuing Grant
CAREER: Hydroclimatic Response to Natural and Anthropogenic Land Cover Change over South America: A Focus on the La Plata River Basin
职业:南美洲自然和人为土地覆盖变化的水文气候响应:聚焦拉普拉塔河流域
- 批准号:
1454089 - 财政年份:2015
- 资助金额:
$ 36.63万 - 项目类别:
Standard Grant
Collaborative Research: The Amazon Groundwater and Its Impact on Evapotranspiration and the Climate of South America
合作研究:亚马逊地下水及其对南美洲蒸散和气候的影响
- 批准号:
1045260 - 财政年份:2011
- 资助金额:
$ 36.63万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 36.63万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 36.63万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 36.63万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 36.63万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
$ 36.63万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
$ 36.63万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318851 - 财政年份:2024
- 资助金额:
$ 36.63万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 36.63万 - 项目类别:
Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318853 - 财政年份:2024
- 资助金额:
$ 36.63万 - 项目类别:
Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318854 - 财政年份:2024
- 资助金额:
$ 36.63万 - 项目类别:
Continuing Grant














{{item.name}}会员




