Collaborative Research: Multi-distribution, Multivariate, and Multiscale Spatio-Temporal Models with Applications to Official Statistics

合作研究:多分布、多变量、多尺度时空模型及其在官方统计中的应用

基本信息

  • 批准号:
    1853096
  • 负责人:
  • 金额:
    $ 62.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This research project will develop statistical methodology for complex spatio-temporal data. The project is motivated by common features found in many modern federal datasets such as the U.S. Census Bureau's American Community Survey (ACS) and the Longitudinal Employer Household Dynamics (LEHD) program. The public-use ACS and LEHD datasets are enormous and have an overwhelming amount of information on many different demographic and economic indicators, at different U.S. regions and different time periods. This project will develop statistical methods that are tailored to these types of federal data. The project will advance knowledge within the statistical sciences, and the results of this research will be of value to the work of government agencies. Because many subject-matter disciplines, such as neuroscience, demography, and econometrics, also deal with complex data, the results of this research will be broadly useful. Software packages will be developed and made publicly available. The investigators will educate and train both graduate and undergraduate students.Using a hierarchical approach, this research project will develop Bayesian methodologies for computationally efficient statistical models for dependent multi-distributional and multiscale (in space and time) spatio-temporal data. The project has three aims. In aim 1, the investigators will develop distribution theory that allows for computationally efficient analysis of high-dimensional datasets that consist of data from multiple distributions, such as Gaussian data, counts, and Bernoulli data. In aim 2, the investigators will develop approaches to small-area estimation in the high-dimensional, multi-distributional, and multivariate spatio-temporal data setting. In aim 3, the investigators will develop approaches to mitigate aggregation error in the high-dimensional, multi-distributional, and multiscale spatio-temporal data setting. The methodologies developed in the project will use basis functions and spatial change of support to facilitate dimension reduction and to aid in computation. This project also will make use of vector auto-regressive models, the Karhunen-Loeve expansion, and conjugate multivariate distribution theory to develop principled methodologies that are useful for both the scientific and federal communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将为复杂的时空数据开发统计方法。该项目的动机是在许多现代联邦数据集中发现的共同特征,如美国人口普查局的美国社区调查(ACS)和雇主纵向家庭动态(LEHD)计划。公共使用的ACS和LEHD数据集是巨大的,并且在美国不同地区和不同时间段具有关于许多不同人口和经济指标的大量信息。该项目将开发针对这些类型的联邦数据的统计方法。该项目将增进统计科学的知识,研究结果将对政府机构的工作具有价值。由于许多学科,如神经科学,人口统计学和计量经济学,也处理复杂的数据,这项研究的结果将是广泛有用的。将开发软件包并向公众提供。研究人员将教育和培训研究生和本科生。使用分层方法,本研究项目将开发贝叶斯方法,为相关的多分布和多尺度(空间和时间)时空数据建立计算效率高的统计模型。该项目有三个目标。在目标1中,研究人员将开发分布理论,允许对由来自多个分布的数据组成的高维数据集进行计算有效的分析,例如高斯数据,计数和伯努利数据。在目标2中,研究人员将开发在高维、多分布和多变量时空数据设置中进行小区域估计的方法。在目标3中,研究人员将开发方法来减轻高维,多分布和多尺度时空数据设置中的聚合误差。在该项目中开发的方法将使用基函数和空间变化的支持,以促进降维,并帮助计算。该项目还将利用向量自回归模型、Karhunen-Loeve展开和共轭多元分布理论来开发对科学界和联邦界都有用的原则性方法。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hierarchical Bayesian modeling of spatio-temporal area-interaction processes
  • DOI:
    10.1016/j.csda.2021.107349
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaxun Chen;A. Micheas;S. Holan
  • 通讯作者:
    Jiaxun Chen;A. Micheas;S. Holan
A Comparative Study of Approximate Bayesian Computation Methods for Gibbs Point Processes.
吉布斯点过程的近似贝叶斯计算方法的比较研究。
Computationally efficient Bayesian unit-level models for non-Gaussian data under informative sampling with application to estimation of health insurance coverage
  • DOI:
    10.1214/21-aoas1524
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul A. Parker;S. Holan;R. Janicki
  • 通讯作者:
    Paul A. Parker;S. Holan;R. Janicki
A Bayesian semiparametric Jolly–Seber model with individual heterogeneity: An application to migratory mallards at stopover
具有个体异质性的贝叶斯半参数 Jolly-Seber 模型:在中途停留迁徙绿头鸭中的应用
  • DOI:
    10.1214/20-aoas1421
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wu, Guohui;Holan, Scott H.;Avril, Alexis;Waldenström, Jonas
  • 通讯作者:
    Waldenström, Jonas
A Bayesian functional data model for surveys collected under informative sampling with application to mortality estimation using NHANES
  • DOI:
    10.1111/biom.13696
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Paul A. Parker;S. Holan
  • 通讯作者:
    Paul A. Parker;S. Holan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Holan其他文献

Scott Holan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Holan', 18)}}的其他基金

Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
NCRN-MN: Improving the Interpretability and Usability of the American Community Survey Through Hierarchical Multiscale Spatio-Temporal Statistical Models
NCRN-MN:通过分层多尺度时空统计模型提高美国社区调查的可解释性和可用性
  • 批准号:
    1132031
  • 财政年份:
    2011
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309310
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309308
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348955
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309309
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了