Collaborative Research: Theoretical and Experimental Investigation of Grain Damage and the Formation of Plate Boundaries
合作研究:颗粒损伤和板块边界形成的理论和实验研究
基本信息
- 批准号:1853184
- 负责人:
- 金额:$ 27.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plate tectonics describes the motion of Earth's upper-most rocky layers and governs almost all geological activity on Earth, such as earthquakes and volcanoes. Plate tectonics is only known to occur on Earth, but not on Venus and Mars, and whether Earth always had plate tectonics in its 4.5 billion-year history is unknown. The emergence of plate tectonics on Earth depends on how rocks in the cold uppermost layers of the mantle - the lithosphere - deform. As rocks deform they can weaken through the process of damage, which concentrates deformation, resulting in more damage, and so on. This positive feedback focuses lithospheric deformation into weak narrow plate boundaries, which are the locus of most seismic and volcanic activity. This project will develop and apply the physics of how mineral grains in rocks are damaged (termed "grain-damage") through combined theoretical and laboratory approaches. When mineral grains are deformed they accumulate defects, which eventually leads to grains breaking down into smaller grains, and this in turn makes the rocks weaker. This process is evident in rocks called mylonites that are often found at plate tectonic boundaries. This project will use grain damage physics to understand how and when plate tectonics arose on early Earth. The project will also study how damage in grains influences cycles of earthquakes at plate boundaries, specifically how rocks weaken, recover and transmit stress to other rocks and eventually trigger more earthquakes. Plate boundary processes have a significant human impact, including evolution of plate boundary fault systems and earthquake recurrence. The project promotes diversity through the support and professional development of two early career female scientists, specifically with interdisciplinary training in theoretical and experimental methods. The project will also involve organization of a symposium on the evolution of plate boundaries for students and young scientists, and will contribute new scientific materials to education and outreach activities at an established scientific visualization facility. This project will advance the study of lithospheric grain-scale physics and deformation mechanisms, and their application to the generation and operation of plate tectonics. The PI's will extend the grain damage theory for lithospheric weakening and plate boundary formation to include mineralogical phase mixing and dislocation dynamics in polymineralic materials, with calibration and testing by rock deformation experiments. These new developments are necessary to address two major scientific questions:1. Emergence of plate tectonics: How did tectonic plate boundaries form in the ancient Archean Earth? Did thermal and petrological evolution in the early Earth, namely cooling, decreasing crustal production, and changes in lithospheric composition, affect localization of deformation in the lithosphere and the emergence of plate tectonics? Specifically, the PI's hypothesize that temperature and melting affect mineral composition, which can then influence rock weakening through the positive feedback of grain damage and mixing between petrological phases.2. Post-seismic creep and lithospheric shear zones: How does transient ductile behavior in the lithosphere, with associated changes in microstructure like grain-size and dislocation density, influence the accumulation, transmission and release of stress following an earthquake? How does this response affect earthquake recurrence cycles and triggering? Does inherited lithospheric weakness, and thus age of a plate boundary, influence post-seismic recovery and earthquake cycles?To address these questions, the investigators will connect new developments in grain-scale physics to plate-scale geodynamic models using experimentally determined rheological laws. These multi-scale models will provide the platform for coupling plate-boundary formation to thermo-chemical evolution of the upper mantle, and to seismogenic behavior in the crust. The ultimate scientific goal of this project is to understand emergence of plate tectonics on early Earth, and how plate boundary evolution and behavior influences post-seismic response and earthquake cycles. These issues span the time scales of the evolution of Earth's surface in deep time, the development of the neotectonic environment, and the behavior of seismically active zones. The proposed work will use theory and experiments to better understand Earth's tectonic processes on the geological and human time scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
板块构造描述了地球最上层岩层的运动,并控制着地球上几乎所有的地质活动,如地震和火山。板块构造只在地球上存在,但在金星和火星上没有,地球在其45亿年的历史中是否一直存在板块构造是未知的。地球上板块构造的出现取决于地幔最上层--岩石圈--的岩石如何变形。当岩石变形时,它们会通过损伤过程减弱,这会集中变形,导致更多的损伤,以此类推。这种正反馈将岩石圈的变形集中到微弱的狭窄板块边界,那里是大多数地震和火山活动的地点。该项目将通过理论和实验相结合的方法,发展和应用岩石中矿物颗粒如何受损(称为“颗粒损伤”)的物理学。当矿物颗粒变形时,它们会积累缺陷,最终导致颗粒分解成更小的颗粒,这反过来又会使岩石变得更弱。这一过程在板块构造边界经常发现的被称为糜棱岩的岩石中明显可见。这个项目将使用颗粒损伤物理学来了解板块构造是如何以及何时在地球早期出现的。该项目还将研究颗粒的破坏如何影响板块边界的地震周期,特别是岩石如何减弱、恢复并将应力传递到其他岩石,最终引发更多地震。板块边界过程对人类有重大影响,包括板块边界断层系统的演化和地震的重演。该项目通过两名职业生涯早期的女科学家的支持和专业发展来促进多样性,特别是通过理论和实验方法的跨学科培训。该项目还将为学生和青年科学家组织一次关于板块边界演变的专题讨论会,并将在一个已建立的科学可视化设施为教育和外联活动贡献新的科学材料。该项目将促进岩石圈颗粒尺度物理和变形机制的研究,以及它们在板块构造生成和运行中的应用。PI将扩展岩石圈弱化和板块边界形成的颗粒损伤理论,以包括多矿物材料中的矿物学相混合和位错动力学,并通过岩石变形实验进行校准和检验。这些新的发展对于解决两个重大的科学问题是必要的:1.板块构造的出现:古代太古代地球上构造板块边界是如何形成的?早期地球的热和岩石学演化,即冷却、地壳产量减少和岩石圈成分的变化,是否影响了岩石圈变形的局部化和板块构造的出现?具体地说,PI的假设是温度和熔融影响矿物组成,然后通过颗粒损伤和岩石学阶段之间的混合的正反馈影响岩石的弱化。地震后蠕变和岩石圈剪切带:岩石圈中的瞬时韧性行为,以及与之相关的微观结构变化,如颗粒尺寸和位错密度,如何影响地震后应力的积累、传递和释放?这种反应如何影响地震的重复周期和触发?继承了岩石圈的弱点,从而影响了板块边界的年龄,是否会影响地震后的恢复和地震周期?为了解决这些问题,研究人员将使用实验确定的流变定律,将颗粒尺度物理的新发展与板块尺度的地球动力学模型联系起来。这些多尺度模式将为板块边界形成与上地幔的热化学演化以及地壳孕震行为的耦合提供平台。该项目的最终科学目标是了解早期地球上板块构造的出现,以及板块边界的演变和行为如何影响地震后的反应和地震周期。这些问题跨越了地球表面深部演化、新构造环境的发展和地震活动区行为的时间尺度。这项拟议的工作将使用理论和实验来更好地了解地球在地质和人类时间尺度上的构造过程。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolution and demise of passive margins through grain mixing and damage
- DOI:10.1073/pnas.2011247118
- 发表时间:2021-01-26
- 期刊:
- 影响因子:11.1
- 作者:Bercovici, David;Mulyukova, Elvira
- 通讯作者:Mulyukova, Elvira
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Bercovici其他文献
Correction to: The Psyche Topography and Geomorphology Investigation
- DOI:
10.1007/s11214-022-00879-2 - 发表时间:
2022-03-16 - 期刊:
- 影响因子:7.400
- 作者:
Ralf Jaumann;James F. Bell;Carol A. Polanskey;Carol A. Raymond;Erik Aspaugh;David Bercovici;Bruce R. Bills;Richard Binzel;William Bottke;John M. Christoph;Simone Marchi;Alicia Neesemann;Katharina Otto;Ryan S. Park;Frank Preusker;Thomas Roatsch;David A. Williams;Mark A. Wieczorek;Maria T. Zuber - 通讯作者:
Maria T. Zuber
David Bercovici的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Bercovici', 18)}}的其他基金
Magma Waves, magma wagging and volcanic oscillations
岩浆波、岩浆摇摆和火山振荡
- 批准号:
1645057 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
Continuing Grant
Isaac Newton Institute Program on Melt in the Mantle
艾萨克·牛顿研究所地幔融化项目
- 批准号:
1619535 - 财政年份:2016
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
Two-Phase Grain Damage and Geochemical Interactions: From Early Tectonic Evolution to Climate and Energy Transitions
两相颗粒损伤和地球化学相互作用:从早期构造演化到气候和能源转型
- 批准号:
1344538 - 财政年份:2014
- 资助金额:
$ 27.3万 - 项目类别:
Continuing Grant
Two-Phase Damage and the Interactions between Earth's Mantle and Climate: From Plate Tectonic Feedbacks to Carbon Capture
两相损伤以及地幔与气候之间的相互作用:从板块构造反馈到碳捕获
- 批准号:
1015229 - 财政年份:2010
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
Two-Phase Damage Theory and the Generation of Plate Tectonics
两相损伤理论与板块构造的生成
- 批准号:
0537599 - 财政年份:2006
- 资助金额:
$ 27.3万 - 项目类别:
Continuing Grant
9th InternationalWorkshop on Numerical Modeling of Mantle Convection and Lithospheric Dynamics
第九届地幔对流与岩石圈动力学数值模拟国际研讨会
- 批准号:
0528776 - 财政年份:2005
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
CSEDI: Whole-Mantle Convection and the Transition-Zone Water Filter
CSEDI:全地幔对流和过渡区水过滤器
- 批准号:
0330745 - 财政年份:2004
- 资助金额:
$ 27.3万 - 项目类别:
Continuing Grant
Collaborative Research: PLUME - A Seismic Experiment to Image the Hawaiian Hotspot and Swell
合作研究:PLUME——对夏威夷热点和涌浪进行成像的地震实验
- 批准号:
0137777 - 财政年份:2003
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
Two-Phase Model of Damage, Shear Localization and Plate Boundary Formation
损伤、剪切局部化和板块边界形成的两相模型
- 批准号:
0105269 - 财政年份:2001
- 资助金额:
$ 27.3万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Aeolian Grain Entrainment Over Flexible Vegetation Canopies: Theoretical Models, Laboratory Experiments and Fieldwork
合作研究:灵活植被冠层的风沙颗粒夹带:理论模型、实验室实验和实地考察
- 批准号:
2327916 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
- 批准号:
2329938 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
- 批准号:
2229101 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
Collaborative Research: AF: SaTC: Medium: Theoretical Foundations of Lattice-Based Cryptography
合作研究:AF:SaTC:媒介:基于格的密码学的理论基础
- 批准号:
2312296 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Continuing Grant
Collaborative Research: A Simulation and Theoretical Analysis of Meteor Evolution over Scales Ranging from Sub-microseconds to Minutes
合作研究:亚微秒到分钟尺度的流星演化模拟与理论分析
- 批准号:
2301644 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
Collaborative Research: A Comprehensive Theoretical Study of Cosmological Magnetic Fields and Turbulence: from the Early to Late Time Universe
合作研究:宇宙磁场和湍流的综合理论研究:从宇宙早期到晚期
- 批准号:
2307699 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
Collaborative Research: A Comprehensive Theoretical Study of Cosmological Magnetic Fields and Turbulence: from the Early to Late Time Universe
合作研究:宇宙磁场和湍流的综合理论研究:从宇宙早期到晚期
- 批准号:
2307698 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
- 批准号:
2329939 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
- 批准号:
2229100 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Standard Grant