Formal Privacy for Complex Data Objects

复杂数据对象的正式隐私

基本信息

项目摘要

This research project will develop statistical methodology for preserving privacy and sharing of large, complex, and highly structured data and models. These types of data are commonly encountered in finance, longitudinal studies, wearable device studies, medical imaging, and electronic health records. Complex data present substantial challenges for preserving subjects' privacy while making data that will advance scientific understanding and policy making publicly available. The project will make major theoretical and methodological contributions to statistical data privacy and to the fields it relies on, such as statistics and computer science. Formal privacy tools now are being adopted by major companies and government agencies for sharing data summaries. This research will demonstrate how even large complex structures, such as human faces, can be made private if that structure is properly exploited. The methods to be developed will have applications in the social, behavioral, and economic sciences, medical research, and industry. The investigators will mentor a post-doctoral researcher, as well as graduate and undergraduate students. Open-source software packages will be developed and made publicly available.This interdisciplinary research project will improve upon methods in statistical disclosure limitation, differential privacy, and functional data analysis to develop formal privacy tools. These tools are essential in the era of big data. The project will focus on three aims: (1) Development of privacy tools for objects in infinite-dimensional linear spaces, especially functions and surfaces. These tools will include non-Gaussian perturbations, exponential mechanisms, and a special focus on functional principal components and regression, given their prominence in functional data analysis; (2) Development of privacy mechanisms for modeling and sharing of objects in nonlinear spaces that can be described as Riemannian manifolds. Such data arises naturally when working with 3D images, shapes, covariance matrices, or large scale spatio-temporal data. The manifold structure will be used to develop perturbation methods, especially Gaussian, that produce representative sanitized estimates and data with greater statistical utility; (3) Development of synthetic data mechanisms for samples from infinite dimensional linear spaces or nonlinear manifolds. Synthetic data are becoming increasingly critical for expediting scientific progress while maintaining data privacy. However, producing synthetic data that properly mimics the complex structures described here remains a major open problem. This project represents some of the first work that exploits nonlinear spaces to increase the utility of the resulting sanitized estimates and data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将开发用于保护隐私和共享大型,复杂和高度结构化的数据和模型的统计方法。这些类型的数据通常在金融、纵向研究、可穿戴设备研究、医学成像和电子健康记录中遇到。复杂的数据对保护受试者的隐私提出了重大挑战,同时使数据能够促进科学理解和政策制定。该项目将对统计数据隐私及其所依赖的领域,如统计学和计算机科学,作出重大的理论和方法贡献。现在,大型公司和政府机构正在采用正式的隐私工具来共享数据摘要。这项研究将证明,如果结构得到适当利用,即使是大型复杂结构,如人脸,也可以成为隐私。待开发的方法将在社会,行为和经济科学,医学研究和工业中应用。研究人员将指导一名博士后研究员,以及研究生和本科生。这个跨学科的研究项目将改进统计披露限制、差异隐私和功能数据分析的方法,以开发正式的隐私工具。这些工具在大数据时代至关重要。该项目将集中于三个目标:(1)开发无限维线性空间中对象的隐私工具,特别是函数和曲面。 这些工具将包括非高斯扰动,指数机制,并特别关注函数主成分和回归,因为它们在函数数据分析中的突出地位;(2)开发隐私机制,用于在可描述为黎曼流形的非线性空间中建模和共享对象。 当处理3D图像、形状、协方差矩阵或大规模时空数据时,这些数据自然会出现。 流形结构将用于开发扰动方法,特别是高斯方法,产生具有代表性的净化估计和具有更大统计效用的数据;(3)为来自无限维线性空间或非线性流形的样本开发合成数据机制。 合成数据对于加快科学进步同时维护数据隐私变得越来越重要。 然而,产生适当模拟这里描述的复杂结构的合成数据仍然是一个主要的开放问题。 该项目代表了利用非线性空间来提高最终净化估计和数据的实用性的首批工作。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exact Privacy Guarantees for Markov Chain Implementations of the Exponential Mechanism with Artificial Atoms
  • DOI:
    10.48550/arxiv.2204.01132
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeremy Seeman;M. Reimherr;Aleksandra B. Slavkovic
  • 通讯作者:
    Jeremy Seeman;M. Reimherr;Aleksandra B. Slavkovic
Representation of Chromosome Conformations Using a Shape Alphabet Across Modeling Methods
跨建模方法使用形状字母表示染色体构象
Statistical Data Privacy: A Song of Privacy and Utility
Structure and Sensitivity in Differential Privacy: Comparing K-Norm Mechanisms
Shape And Structure Preserving Differential Privacy
  • DOI:
    10.48550/arxiv.2209.12667
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlos Soto;K. Bharath;M. Reimherr;Aleksandra B. Slavkovic
  • 通讯作者:
    Carlos Soto;K. Bharath;M. Reimherr;Aleksandra B. Slavkovic
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandra Slavkovic其他文献

Aleksandra Slavkovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandra Slavkovic', 18)}}的其他基金

Collaborative Research: Record Linkage and Privacy-Preserving Methods for Big Data
协作研究:大数据的记录链接和隐私保护方法
  • 批准号:
    1534433
  • 财政年份:
    2015
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
CDI-Type II: Collaborative Research: Integrating Statistical and Computational Approaches to Privacy
CDI-类型 II:协作研究:整合隐私统计和计算方法
  • 批准号:
    0941553
  • 财政年份:
    2010
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
Statistical Disclosure Limitation Methods for Tabular Data
表格数据的统计披露限制方法
  • 批准号:
    0532407
  • 财政年份:
    2005
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant

相似海外基金

Evolving privacy and utility in data storage and publishing
数据存储和发布中不断发展的隐私和实用性
  • 批准号:
    DE240100165
  • 财政年份:
    2024
  • 资助金额:
    $ 68万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Verifying Security and Privacy of Distributed Applications
职业:验证分布式应用程序的安全性和隐私
  • 批准号:
    2338317
  • 财政年份:
    2024
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
  • 批准号:
    2348181
  • 财政年份:
    2024
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
A Principled Framework for Explaining, Choosing and Negotiating Privacy Parameters of Differential Privacy
解释、选择和协商差异隐私的隐私参数的原则框架
  • 批准号:
    23K24851
  • 财政年份:
    2024
  • 资助金额:
    $ 68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global Road Damage Detection with privacy-preserved collaboration
通过保护隐私的协作进行全球道路损坏检测
  • 批准号:
    24K17366
  • 财政年份:
    2024
  • 资助金额:
    $ 68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343619
  • 财政年份:
    2024
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了