NSFGEO-NERC:Collaborative Research: A New Mechanistic Framework for Modeling Rift Processes in Antarctic Ice Shelves Validated through Improved Strain-rate and Seismic Observations
NSFGEO-NERC:合作研究:通过改进的应变率和地震观测验证南极冰架裂谷过程建模的新机制框架
基本信息
- 批准号:1853896
- 负责人:
- 金额:$ 36.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Calving of tabular icebergs accounts for a significant fraction of ice mass loss from the Antarctic Ice Sheet. In addition to this direct mass loss, calving may further accelerate the seaward flow of grounded ice by reducing resistive stresses provided by ice shelves, the floating extensions of the ice sheet. Tabular icebergs are much longer and wider than they are thick and form when full-thickness fractures known as rifts intersect the edges of an ice shelf. The processes and drivers of ice-shelf rifting are neither well understood nor accurately represented in ice-flow models. As a result, it is not currently possible to predict when tabular icebergs may form, how large they will be, and how calving may evolve as the climate changes. This lack of predictive capability has two important consequences. First, it is not possible to confidently project rates of mass loss due to calving from floating shelves. Second, it is not possible to confidently project how tabular iceberg calving will influence the mass loss from the grounded ice sheet. This second consequence is a major source of uncertainty in projections of sea-level rise over human timescales.In this project, the team aims to improve understanding of tabular iceberg calving using a combination of detailed observations and a suite of increasingly sophisticated models to study the processes and drivers of rifting in ice shelves. The work will focus on a natural laboratory: the ice-shelf system formed by the Brunt Ice Shelf and Stancomb-Wills Glacier Tongue, East Antarctica, which has one of the longest and most detailed observational records in Antarctica. As of early 2020, two active rift systems are propagating across the Brunt Ice Shelf, one of which should soon form a large tabular iceberg. Thus, there is a rare opportunity to observe multiple active rifts. The project will take advantage of this situation by employing remote-sensing observations collected from a variety of spaceborne instruments to make detailed time-dependent measurements of velocity and strain-rate fields across the ice shelf and, notably, in the vicinity of the active rift tips. At these tips, stresses are expected to intensify due to the presence of the rift. The observations will inform a suite of ice-flow-and-fracture models that will be developed and used to better understand how rifts propagate and how best to represent rift propagation in large scale ice-flow models. The modeling objective follows a development path that aims to yield a community ice-flow model capable of simulating rift propagation, and that has been tested against observations. Seismic data already collected in the vicinity of an active rift will provide detailed knowledge of rifting processes and will complement the remote sensing observations and inform the modeling efforts. This combination of multi-faceted observations and models aims to illuminate the fundamental processes of ice-shelf rifting, thereby contributing to the knowledge necessary to make reliable projections of ice-sheet evolution and sea-level rise.This project is jointly funded by the National Science Foundation’s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (UKRI/NERC) of the United Kingdom (UK) through the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own ivestigators and component of the work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
板状冰山的崩解占南极冰盖冰质量损失的很大一部分。除了这种直接的质量损失外,冰解还可以通过减少冰架(冰盖的浮动延伸部分)提供的阻力来进一步加速接地冰的向海流动。板状冰山的长度和宽度要比它们的厚度大得多,当被称为裂缝的全厚度裂缝与冰架边缘相交时,它们就形成了。冰架断裂的过程和驱动因素既没有得到很好的理解,也没有在冰流模型中得到准确的描述。因此,目前还无法预测板状冰山何时形成,它们将有多大,以及随着气候变化,冰解如何演变。这种预测能力的缺乏有两个重要的后果。首先,不可能有把握地预测由于浮架产犊而造成的质量损失率。其次,不可能有把握地预测板状冰山崩解将如何影响从接地冰盖的质量损失。第二个后果是人类时间尺度上海平面上升预测的不确定性的主要来源。在这个项目中,该团队旨在通过结合详细的观察和一套日益复杂的模型来研究冰架断裂的过程和驱动因素,以提高对板状冰山断裂的理解。这项工作将侧重于一个自然实验室:东南极洲布伦特冰架和斯坦科姆-威尔斯冰川舌形成的冰架系统,该系统拥有南极洲最长和最详细的观测记录之一。截至2020年初,两个活跃的裂谷系统正在布伦特冰架上传播,其中一个应该很快就会形成一个大型的平板冰山。因此,有一个难得的机会来观察多个活跃的裂缝。该项目将利用这一情况,利用从各种空间仪器收集的遥感观测资料,对整个冰架,特别是活动裂谷尖端附近的速度和应变率场进行详细的随时间变化的测量。 在这些尖端,由于裂谷的存在,应力预计会加剧。这些观测结果将为一套冰流和断裂模型提供信息,这些模型将被开发和使用,以更好地了解裂缝如何传播,以及如何在大规模冰流模型中最好地代表裂缝传播。建模目标遵循的发展路径,旨在产生一个社区冰流模型能够模拟裂缝传播,并已对观测进行了测试。已在活动裂谷附近收集的地震数据将提供关于裂谷过程的详细知识,并将补充遥感观测,为建模工作提供信息。这种多方面观测和模型的结合旨在阐明冰架断裂的基本过程,该项目由美国国家科学基金会地球科学理事会(NSF/GEO)和美国国家环境研究理事会共同资助(UKRI/NERC)通过NSF/GEO-NERC牵头机构协议。该协议允许美国/英国提交一份联合提案,并由研究者拥有最大预算比例的机构进行同行评审。一旦成功地共同确定了一个奖项,每个机构都会为预算的一部分和与自己的调查人员和工作组成部分相关的调查人员提供资金。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley Lipovsky其他文献
Bradley Lipovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley Lipovsky', 18)}}的其他基金
RAPID: Multiplexed Distributed Acoustic Sensing (DAS) at the Ocean Observatory Initiative (OOI) Regional Cabled Array (RCA)
RAPID:海洋观测计划 (OOI) 区域电缆阵列 (RCA) 的多路复用分布式声学传感 (DAS)
- 批准号:
2415521 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338502 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
Collaborative Research: Improving Model Representations of Antarctic Ice-shelf Instability and Break-up due to Surface Meltwater Processes
合作研究:改进地表融水过程导致的南极冰架不稳定和破裂的模型表示
- 批准号:
2213705 - 财政年份:2023
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
NSFGEO-NERC:Collaborative Research: A New Mechanistic Framework for Modeling Rift Processes in Antarctic Ice Shelves Validated through Improved Strain-rate and Seismic Observations
NSFGEO-NERC:合作研究:通过改进的应变率和地震观测验证南极冰架裂谷过程建模的新机制框架
- 批准号:
2127313 - 财政年份:2021
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317936 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334798 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
2334541 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317938 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334797 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Role of the Overturning Circulation in Carbon Accumulation (ROCCA)
NSFGEO-NERC:合作研究:翻转环流在碳积累中的作用(ROCCA)
- 批准号:
2400434 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317937 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Continuing Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 36.23万 - 项目类别:
Standard Grant