FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems

FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影

基本信息

  • 批准号:
    1854204
  • 负责人:
  • 金额:
    $ 39.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Complex, time-evolving systems are ubiquitous in nature and society, with examples ranging from the Earth's weather and climate, to the function and dynamics of biomolecules, and the behavior of markets and economies. Despite their apparent complexity, many such systems exhibit a form of underlying organized structure (``building blocks''), whose discovery would enhance our ability to understand and predict a wide range of phenomena. The goal of this project is to develop the next generation of mathematical and algorithmic tools that can harness the information content of large datasets acquired from experiments and observations to create coherent representations of complex systems, and use these representations to perform prediction, and ultimately, control. These objectives will be addressed through a novel combination of mathematical techniques, bridging dynamical systems theory and differential geometry with machine learning and data science. The newly developed techniques will be tested and applied in real-world problems through collaboration with domain experts in the areas of climate dynamics, space physics, and condensed matter physics. The project will also contribute to STEM workforce and curricular development through training of students and postdoctoral researchers, and design of multi-disciplinary lecture courses. The modern scientific method is undergoing an evolutionary change wherein large data sets and machine learning algorithms have the potential to outperform classical first-principles approaches for certain complex phenomena. For these tools to be accepted by the scientific community, a rigorous mathematical framework is required to match the verifiability and quantifiability of the classical modeling approach. Recently, a new tool called the diffusion forecast has been developed based on provably consistent estimators, which learn the unknown structure of a large class of stochastic dynamical systems on manifolds. Moreover, the results of many published numerical experiments indicate that this framework can be applied far beyond the restricted context of the current theory. In particular, the evidence suggests that the consistency proofs can be extended to non-autonomous projections of complex systems, deterministic chaotic systems represented by non-compact operators, non-smooth domains such as fractal attractors, and even generalized tensors on metric-measure spaces. This project will undertake a rigorous mathematical unification of these problems, leading to transformative advances in our ability to model and describe complex systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂的、随时间演化的系统在自然界和社会中无处不在,从地球的天气和气候,到生物分子的功能和动力学,以及市场和经济的行为。尽管它们表面上很复杂,但许多这样的系统都表现出一种潜在的有组织的结构(“积木”),它的发现将提高我们理解和预测各种现象的能力。该项目的目标是开发下一代数学和算法工具,这些工具可以利用从实验和观察中获得的大型数据集的信息内容来创建复杂系统的连贯表示,并使用这些表示来执行预测,并最终控制。这些目标将通过数学技术的新颖组合来实现,将动力系统理论和微分几何与机器学习和数据科学联系起来。新开发的技术将通过与气候动力学、空间物理学和凝聚态物理学领域的专家合作,在现实世界的问题中进行测试和应用。该项目还将通过培训学生和博士后研究人员以及设计多学科讲座课程,为STEM劳动力和课程开发做出贡献。 现代科学方法正在经历一场演变,其中大型数据集和机器学习算法有可能在某些复杂现象中超越经典的第一原理方法。 为了使这些工具被科学界所接受,需要一个严格的数学框架来匹配经典建模方法的可验证性和可量化性。 最近,一种新的工具,称为扩散预测已被开发的基础上可证明的一致估计,学习未知的结构的一大类随机动力系统的流形。 此外,许多已发表的数值实验的结果表明,这个框架可以应用远远超出当前理论的限制范围。 特别是,证据表明,一致性证明可以扩展到复杂系统的非自治投影,由非紧算子表示的确定性混沌系统,非光滑域,如分形吸引子,甚至度量测度空间上的广义张量。该项目将对这些问题进行严格的数学统一,从而使我们在建模和描述复杂系统的能力方面取得革命性的进步。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bridging Data Science and Dynamical Systems Theory
连接数据科学和动力系统理论
Diffusion Maps for Embedded Manifolds with Boundary with Applications to PDEs
  • DOI:
    10.1016/j.acha.2023.101593
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Vaughn;Tyrus Berry;Harbir Antil
  • 通讯作者:
    Ryan Vaughn;Tyrus Berry;Harbir Antil
Spectral Exterior Calculus
Fractional diffusion maps
分数扩散图
Learning Theory for Dynamical Systems
  • DOI:
    10.1137/22m1516865
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tyrus Berry;Suddhasattwa Das
  • 通讯作者:
    Tyrus Berry;Suddhasattwa Das
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tyrus Berry其他文献

A Poisson Kalman Filter to Control the Dynamics of Neonatal Sepsis and Postinfectious Hydrocephalus
泊松卡尔曼滤波器控制新生儿败血症和感染后脑积水的动力学
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Donald Ebeigbe;Tyrus Berry;S. Schiff;T. Sauer
  • 通讯作者:
    T. Sauer
Kernel Density Estimation on Embedded Manifolds with Boundary
带边界嵌入式流形的核密度估计
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tyrus Berry;T. Sauer
  • 通讯作者:
    T. Sauer
Linear theory for filtering nonlinear multiscale systems with model error
用于过滤具有模型误差的非线性多尺度系统的线性理论
Variable Bandwidth Di usion Kernels
可变带宽扩散内核
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tyrus Berry;J. Harlim
  • 通讯作者:
    J. Harlim
Nonparametric Uncertainty Quantification for Stochastic Gradient Flows
随机梯度流的非参数不确定性量化

Tyrus Berry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tyrus Berry', 18)}}的其他基金

Semiparametric Methods for Data Assimilation and Uncertainty Quantification
数据同化和不确定性量化的半参数方法
  • 批准号:
    2006808
  • 财政年份:
    2020
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了