Characterization Of The Biophysical Impact Of Rigid Red Blood Cells In Sickle Cell Disease: Creating A Novel Path For Treatment
镰状细胞病中刚性红细胞的生物物理影响的表征:创造新的治疗途径
基本信息
- 批准号:1854726
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sickle cell disease (SCD) is a hereditary blood disease affecting approximately 100,000 Americans and millions more worldwide. Patients with SCD have a significantly shortened lifespan with a compromised quality of life since childhood, i.e., frequent hospitalization for acute pain crises, infections, acute breathing problems and strokes. Current treatment strategies are limited and highly invasive, e.g., addictive narcotics(opiods) and blood transfusions. The most visible indicators of SCD are changes in the patient's red blood cells (RBCs), which become more rigid and are often deformed from their normal round shape to a crescent ("sickle") shape. Though these changes are well known, little is known about how the blood flow alterations created solely by rigid RBCs impact the functionality of other blood cells, particularly white blood cells (WBCs) and platelets, which play an important role in disease symptoms such as infections and acute pain. Thus, this project seeks to develop a unique combination of experimental tools to quantify how RBC rigidity causes the altered WBC and platelet interactions that lead to the high rate of infection, blood clotting and pain crisis associated with SCD. Insights gained are expected to lead to better treatments aimed at reducing the number of crisis episodes, infection, hospital days, and most importantly, need for opioids. The project involves multi-disciplinary activities in biology and engineering that create excellent educational and research opportunities in STEM areas, showcasing the vast opportunities that exist for basic science and engineering to impact the treatment of human diseases. The research findings will be disseminated to a broad audience, from K-12 to undergraduate and graduate levels, and the research team will provide education to SCD patients and families during the consent process regarding the importance of research in sickle cell, local advocacy, and how patients can be involved in their care.Though rigid sickle shaped RBCs (irreversible i-sRBCs) are the hallmark of SCD, only a small fraction of these cells is present in the patient's bloodstream at a given time due to their high rate of lysing. Instead, the highly rigid, but not sickle-shaped cells (reversible r-RBCs) represent the main sickled RBCs circulating in SCD. However, little attention has been given to how the persistent presence of the r-sRBCs in the bloodstream in SCD may impact hemodynamics and the functionality of other blood cells, i.e., white blood cells (WBCs) and platelets, and the downstream contribution to disease manifestation beyond the occlusion of the microvasculature, which is primarily attributed to the i-sRBCs that cause significant physical damage to vital organs, including the spleen, liver, and lungs, when traveling through the body. The goal of this project is to develop and use a unique combination of experimental tools to quantify r-sRBC rigidity in SCD and to systematically explore how this rigidity affects the spatial distribution and the dynamic behavior of white blood cells (WBCs) and platelets as it relates to disease symptoms, such as infection rate and pain crisis. The research plan is designed to test the central hypothesis that the r-sRBCs in SCD patient blood alter the margination of WBC and platelets, impacting their ability to respond to disease symptoms in SCD. The Research Plan is organized under three objectives. The FIRST OBJECTIVE is to characterize the stiffness of the diseased RBC population in SCD patient blood via ektacytometry with a model SCD blood having artificially rigidified RBCs used for calibration. The SECOND OBJECTIVE is to evaluate how WBC and platelet adhesion to the blood vessel wall changes with varying level of RBC stiffness in SCD and the downstream impact on disease presentation. The THIRD OBJECTIVE is to determine the impact of diluting the stiff RBC fractions, as would occur during blood transfusion, on the ability of WBCs and platelets to adhere, using flow adhesion models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
镰状细胞病(SCD)是一种遗传性血液病,影响大约10万美国人和全世界数百万人。SCD患者的寿命明显缩短,自童年以来生活质量下降,即经常因急性疼痛危象、感染、急性呼吸问题和中风住院。目前的治疗策略是有限的和高度侵入性的,例如成瘾性麻醉剂(阿片类药物)和输血。SCD最明显的指标是患者红细胞(rbc)的变化,红细胞变得更加坚硬,通常从正常的圆形变形为新月形(镰刀形)。虽然这些变化是众所周知的,但对于仅由刚性红细胞引起的血流变化如何影响其他血细胞,特别是白细胞和血小板的功能,知之甚少,白细胞和血小板在感染和急性疼痛等疾病症状中起着重要作用。因此,该项目旨在开发一种独特的实验工具组合,以量化RBC刚性如何导致白细胞和血小板相互作用的改变,从而导致与SCD相关的高感染率,血液凝固和疼痛危机。预计获得的见解将导致更好的治疗方法,旨在减少危机发作次数、感染、住院天数,最重要的是减少对阿片类药物的需求。该项目涉及生物学和工程学领域的多学科活动,在STEM领域创造了优秀的教育和研究机会,展示了基础科学和工程影响人类疾病治疗的巨大机会。研究结果将传播给广泛的受众,从K-12到本科和研究生水平,研究团队将在同意过程中向SCD患者和家属提供关于镰状细胞研究的重要性、当地宣传以及患者如何参与其护理的教育。虽然硬镰状红细胞(不可逆的i- srbc)是SCD的标志,但由于其高溶解率,在给定时间内,这些细胞中只有一小部分存在于患者的血液中。相反,高度刚性但不是镰状细胞(可逆r-红细胞)代表SCD中循环的主要镰状红细胞。然而,很少有人关注SCD患者血液中r- srbc的持续存在如何影响血液动力学和其他血细胞(即白细胞和血小板)的功能,以及在微血管闭塞之外的下游疾病表现,这主要归因于i- srbc对重要器官(包括脾、肝和肺)造成严重的物理损伤。当在身体中旅行时。该项目的目标是开发和使用一种独特的实验工具组合来量化SCD中的r-sRBC刚性,并系统地探索这种刚性如何影响白细胞(wbc)和血小板的空间分布和动态行为,因为它与疾病症状(如感染率和疼痛危机)有关。该研究计划旨在验证SCD患者血液中的r- srbc改变白细胞和血小板的边缘,影响其对SCD疾病症状的反应能力的中心假设。研究计划有三个目标。第一个目的是通过使用人工硬化红细胞用于校准的SCD模型血的细胞计数法来表征SCD患者血液中患病红细胞群的硬度。第二个目的是评估SCD中白细胞和血小板粘附血管壁如何随红细胞硬度的变化而变化,以及对疾病表现的下游影响。第三个目的是利用血流粘附模型,确定在输血过程中稀释坚硬的红细胞部分对白细胞和血小板粘附能力的影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The influence of red blood cell deformability on hematocrit profiles and platelet margination
- DOI:10.1371/journal.pcbi.1007716
- 发表时间:2020-03-01
- 期刊:
- 影响因子:4.3
- 作者:Czaja, Benjamin;Gutierrez, Mario;Eniola-Adefeso, Omolola
- 通讯作者:Eniola-Adefeso, Omolola
Method article: an in vitro blood flow model to advance the study of platelet adhesion utilizing a damaged endothelium
- DOI:10.1080/09537104.2021.1988550
- 发表时间:2021-12-19
- 期刊:
- 影响因子:3.3
- 作者:Banka, Alison Leigh;Eniola-Adefeso, Omolola
- 通讯作者:Eniola-Adefeso, Omolola
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omolola Eniola-Adefeso其他文献
Perspectives on disparities in scientific visibility
关于科学可见性差异的观点
- DOI:
10.1038/s41578-021-00329-5 - 发表时间:
2021-06-03 - 期刊:
- 影响因子:86.200
- 作者:
Tejal A. Desai;Omolola Eniola-Adefeso;Kelly R. Stevens;Maribel Vazquez;Princess Imoukhuede - 通讯作者:
Princess Imoukhuede
Nanoparticle-neutrophils interactions for autoimmune regulation
用于自身免疫调节的纳米粒子-中性粒细胞相互作用
- DOI:
10.1016/j.addr.2024.115316 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:17.600
- 作者:
Daniel Kupor;Michael L. Felder;Shivanie Kodikalla;Xueqi Chu;Omolola Eniola-Adefeso - 通讯作者:
Omolola Eniola-Adefeso
Intravascularly infused extracellular matrix as a biomaterial for targeting and treating inflamed tissues
血管内输注细胞外基质作为靶向和治疗炎症组织的生物材料
- DOI:
10.1038/s41551-022-00964-5 - 发表时间:
2022-12-29 - 期刊:
- 影响因子:26.600
- 作者:
Martin T. Spang;Ryan Middleton;Miranda Diaz;Jervaughn Hunter;Joshua Mesfin;Alison Banka;Holly Sullivan;Raymond Wang;Tori S. Lazerson;Saumya Bhatia;James Corbitt;Gavin D’Elia;Gerardo Sandoval-Gomez;Rebecca Kandell;Maria A. Vratsanos;Karthikeyan Gnanasekaran;Takayuki Kato;Sachiyo Igata;Colin Luo;Kent G. Osborn;Nathan C. Gianneschi;Omolola Eniola-Adefeso;Pedro Cabrales;Ester J. Kwon;Francisco Contijoch;Ryan R. Reeves;Anthony N. DeMaria;Karen L. Christman - 通讯作者:
Karen L. Christman
Omolola Eniola-Adefeso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Omolola Eniola-Adefeso', 18)}}的其他基金
CAREER: Defining the interplay between hemodynamics and shape/size in particle localization to the vascular wall - an integrated in vitro and in vivo study
职业:定义血管壁颗粒定位中的血流动力学和形状/大小之间的相互作用 - 一项体外和体内综合研究
- 批准号:
1054352 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BRIGE: Engineering Spheroidal Particles for Drug Delivery - A Novel Approach to Vascular Targeted Therapies
BRIGE:用于药物输送的工程球形颗粒 - 血管靶向治疗的新方法
- 批准号:
0824182 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Impact of vaping ingredients on biophysical properties of lung surfactant
电子烟成分对肺表面活性物质生物物理性质的影响
- 批准号:
564922-2021 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Modeling study on the impact of detailed biophysical properties of individual neurons on global network dynamics in the cerebellum
单个神经元详细生物物理特性对小脑全局网络动态影响的建模研究
- 批准号:
20K06850 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
(9) Biophysical Description of Age and Dose Dependent Changes to Dendritic Morphology that Impact Cognition following Radiation Cancer Therapy
(9) 放射癌症治疗后影响认知的树突形态的年龄和剂量依赖性变化的生物物理学描述
- 批准号:
9172067 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
(9) Biophysical Description of Age and Dose Dependent Changes to Dendritic Morphology that Impact Cognition following Radiation Cancer Therapy
(9) 放射癌症治疗后影响认知的树突形态的年龄和剂量依赖性变化的生物物理学描述
- 批准号:
9982044 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
The Impact of Emergent Biophysical Properties of Tumor Boundaries on Tumor Progression and Metastasis: Insights from in vivo, in vitro, and Computational Studies
肿瘤边界的新兴生物物理特性对肿瘤进展和转移的影响:来自体内、体外和计算研究的见解
- 批准号:
338819 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Fellowship Programs
Electrical Biophysical Forces Impact Cardiac Morphogenesis
电生物物理力影响心脏形态发生
- 批准号:
8328634 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Electrical Biophysical Forces Impact Cardiac Morphogenesis
电生物物理力影响心脏形态发生
- 批准号:
8146676 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Electrical Biophysical Forces Impact Cardiac Morphogenesis
电生物物理力影响心脏形态发生
- 批准号:
8678969 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Electrical Biophysical Forces Impact Cardiac Morphogenesis
电生物物理力影响心脏形态发生
- 批准号:
8868154 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Electrical Biophysical Forces Impact Cardiac Morphogenesis
电生物物理力影响心脏形态发生
- 批准号:
8507263 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别: