Interactions between Newton-Okounkov Bodies, Cluster Algebras, and Orbit Closures
牛顿-奥孔科夫体、簇代数和轨道闭包之间的相互作用
基本信息
- 批准号:1855598
- 负责人:
- 金额:$ 17.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The interplay between combinatorics, which studies with discrete structures, and algebraic geometry, which is concerned with solutions of polynomial equations, has immensely enriched both areas. Combinatorics provides discrete objects that can be used to encode information about an algebraic variety. Conversely, the rich structure of a combinatorial object is often better understood when seen as a discrete shadow of an algebro-geometric phenomenon. The research in this project develops the interplay between these areas utilizing tools which include degenerations of varieties and high-dimensional analogues of polygons.This project aims to understand various aspects of the interplay between combinatorics and algebraic geometry for Newton-Okounkov bodies, symmetric orbit closures, and subword complexes. Generalizing the relation between polytopes and toric varieties, Newton-Okounkov bodies provide tools from convex geometry to study algebraic varieties. The PI will develop the theory of Newton-Okounkov bodies by constructing combinatorial parameter spaces for these bodies together with a wall-crossing formula. The study of symmetric orbit closures is relevant to the theory of Kazhdan-Lusztig-Vogan polynomials and Harish-Chandra modules for a certain real Lie group, mirroring the connection of Schubert varieties to Kazhdan-Lusztig polynomials and representation theory. The PI will investigate the projections of symmetric orbit closures to Grassmannians. Knutson and Miller introduced subword complexes to study the cohomology of Schubert varieties. The PI will relate these complexes with toric degenerations of Schubert varieties and their desingularizations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究离散结构的组合学和研究多项式方程解的代数几何之间的相互作用极大地丰富了这两个领域。组合学提供了离散对象,可用于对代数变量的信息进行编码。相反,当将组合对象的丰富结构视为代数-几何现象的离散阴影时,通常会更好地理解。本项目的研究利用包括品种退化和高维多边形类似物在内的工具开发了这些领域之间的相互作用。该项目旨在了解牛顿-奥昆科夫体、对称轨道闭包和子词复合体的组合学和代数几何之间相互作用的各个方面。牛顿-奥肯科夫体推广了多面体与环变之间的关系,为凸几何研究代数变提供了工具。PI将通过构造这些体的组合参数空间以及一个过壁公式来发展牛顿-奥孔科夫体的理论。对称轨道闭包的研究涉及到某实李群的Kazhdan-Lusztig- vogan多项式和Harish-Chandra模的理论,反映了Schubert变分与Kazhdan-Lusztig多项式和表示理论的联系。PI将研究对称轨道闭包对格拉斯曼的投影。Knutson和Miller引入子词复合体来研究Schubert变异的上同源性。PI将把这些复合体与舒伯特变种的环向退化及其去广域化联系起来。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K-orbit closures and Barbasch–Evens–Magyarvarieties
K 轨道闭合和 Barbasch-Evens-Magyarvarieties
- DOI:10.2140/pjm.2022.320.103
- 发表时间:2022
- 期刊:
- 影响因子:0.6
- 作者:Escobar, Laura;Wyser, Benjamin J.;Yong, Alexander
- 通讯作者:Yong, Alexander
Which Schubert Varieties are Hessenberg Varieties?
哪些舒伯特变奏曲属于海森堡变奏曲?
- DOI:10.1007/s00031-023-09825-0
- 发表时间:2023
- 期刊:
- 影响因子:0.7
- 作者:Escobar, Laura;Precup, Martha;Shareshian, John
- 通讯作者:Shareshian, John
The harmonic polytope
调和多面体
- DOI:10.1007/s00029-021-00687-6
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ardila, Federico;Escobar, Laura
- 通讯作者:Escobar, Laura
Complexity of the usual torus action on Kazhdan–Lusztig varieties
- DOI:10.5802/alco.279
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Maria Donten-Bury;Laura Escobar;Irem Portakal
- 通讯作者:Maria Donten-Bury;Laura Escobar;Irem Portakal
Gröbner bases, symmetric matrices, and type C Kazhdan–Lusztig varieties
Gröbner 碱、对称矩阵和 C 型 KazhdanâLusztig 簇
- DOI:10.1112/jlms.12856
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Escobar, Laura;Fink, Alex;Rajchgot, Jenna;Woo, Alexander
- 通讯作者:Woo, Alexander
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Escobar Vega其他文献
Brick Varieties And Toric Matrix Schubert Varieties
砖形品种和环面矩阵舒伯特品种
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Laura Escobar Vega - 通讯作者:
Laura Escobar Vega
Star¹-convex functions on tropical linear spaces of complete graphs
完全图热带线性空间上的星1-凸函数
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Laura Escobar Vega - 通讯作者:
Laura Escobar Vega
Laura Escobar Vega的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Escobar Vega', 18)}}的其他基金
CAREER: Combinatorial Algebraic Geometry: Flag Varieties, Toric Geometry, and Applications
职业:组合代数几何:旗形簇、环面几何和应用
- 批准号:
2142656 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别:
Continuing Grant
Research School: Geometric Methods in Combinatorics
研究学院:组合数学中的几何方法
- 批准号:
2019416 - 财政年份:2020
- 资助金额:
$ 17.28万 - 项目类别:
Standard Grant
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 17.28万 - 项目类别:
Studentship
Translations between Type Theories
类型理论之间的翻译
- 批准号:
EP/Z000602/1 - 财政年份:2025
- 资助金额:
$ 17.28万 - 项目类别:
Research Grant
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 17.28万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 17.28万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 17.28万 - 项目类别:
Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 17.28万 - 项目类别:
Continuing Grant
Exploration of relationship between floods, poverty, and dynamic environmental sustainability
探索洪水、贫困和动态环境可持续性之间的关系
- 批准号:
24K07692 - 财政年份:2024
- 资助金额:
$ 17.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of crosstalk between Fanconi Anemia pathway and ATM for novel therapeutic strategies of chemoresistant ALT-positive high-risk neuroblastoma
范可尼贫血通路与 ATM 之间的串扰研究,用于化疗耐药 ALT 阳性高危神经母细胞瘤的新治疗策略
- 批准号:
24K10442 - 财政年份:2024
- 资助金额:
$ 17.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thwarted Identity: The Missing Link Between Psychopathology and Prejudice
受挫的身份:精神病理学与偏见之间缺失的联系
- 批准号:
DP240100108 - 财政年份:2024
- 资助金额:
$ 17.28万 - 项目类别:
Discovery Projects
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 17.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists