Polytopes and Real Tropical Geometry
多面体和真正的热带几何
基本信息
- 批准号:1855726
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polynomial (algebraic) equations and inequalities are ubiquitous in all areas of mathematics, sciences, and engineering, where it is interesting to ask: Are there any solutions? How many? What is the shape of the space of all solutions? What is the optimal solution? The answers depend on the chosen number system --- whether we consider whole, rational, real, or complex numbers; positive or negative numbers; and so on. Tropical geometry arises by considering algebraic equations and inequalities over the tropical (max-times) algebra where addition of two real numbers is replaced by taking their maximum. The tropical equations are easier to solve, and surprisingly, some geometric features of the solution set over real or complex numbers can be computed from the solution set over the tropical numbers. This project aims at developing the tropical geometry for real algebraic geometry (which studies the geometry of algebraic equations and inequalities over real numbers) and polytope theory (which studies discrete properties of linear equations and inequalities). Applications include development of new computational tools for algebraic computations and optimization, which can be used to solve a variety of problems arising from statistics, economics, and engineering. As part of this award the PI will also mentor students, and will continue her outreach efforts as well as her work in promoting inclusiveness and equity in the mathematical sciences. During the last decade tropical geometry has grown into a powerful tool in combinatorics, particularly in matroid theory, and in algebraic geometry, particularly in log geometry, analytic geometry, and computational geometry. The project will solve combinatorial problems in three research directions at the intersection of polyhedral, real, and tropical geometry, with an emphasis on combinatorial theory.1. On deformations of polytopes. Some classical problems and constructions will be studied using tropical geometry. The focus is on zonotopes and generalized permutohedra.2. On real tropicalizations of semialgebraic sets. Foundations of real algebraic geometry will be developed. Important examples arise from combinatorics and optimization, such as oriented matroids, hyperbolic varieties, and the cone of non-negative polynomials.3. On the relationship between algebraic matroids and Chow polytopes. The proposed research will give a better understanding of these classical constructions.The proposed work on polytopes has applications in statistics, in particular causal inference, and the work on real tropical geometry has applications in polynomial optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多项式(代数)方程和不等式在数学、科学和工程的所有领域都无处不在,问这些问题很有趣:它们有解吗?有多少?所有解的空间形状是什么?最优解是什么?答案取决于所选择的数字系统——我们考虑的是整数、有理数、实数还是复数;正数或负数;等等......。热带几何是通过考虑热带(最大倍)代数上的代数方程和不等式而产生的,其中两个实数的加法被取其最大值所取代。热带方程更容易求解,令人惊讶的是,实数或复数解集的一些几何特征可以从热带数解集计算出来。本项目旨在发展实代数几何(研究实数上的代数方程和不等式的几何)和多面体理论(研究线性方程和不等式的离散性质)的热带几何。应用包括开发用于代数计算和优化的新计算工具,可用于解决统计学,经济学和工程学中出现的各种问题。作为该奖项的一部分,PI还将指导学生,并将继续她的外展努力以及她在促进数学科学的包容性和公平性方面的工作。在过去的十年中,热带几何已经发展成为组合学,特别是在矩阵理论中,以及代数几何,特别是在对数几何、解析几何和计算几何中一个强大的工具。项目将解决多面体几何、实几何和热带几何交叉的三个研究方向的组合问题,重点是组合理论。关于多面体的变形。一些经典的问题和结构将研究使用热带几何。重点是分带体和广义复面体。半代数集的实热带化。将发展真正代数几何的基础。重要的例子来自于组合学和最优化,如有向拟阵、双曲变型和非负多项式的锥。论代数拟阵与Chow多面体的关系。所提出的研究将有助于更好地理解这些经典结构。所提出的关于多面体的工作可以应用于统计,特别是因果推理,而关于实际热带几何的工作可以应用于多项式优化。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tropical Combinatorics
热带组合学
- DOI:10.1090/noti2597
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Rincón, Felipe;Tran, Ngoc Mai;Yu, Josephine
- 通讯作者:Yu, Josephine
On the Hypergraph Connectivity of Skeleta of Polytopes
多面体骨骼的超图连通性
- DOI:10.1007/s00454-021-00362-9
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Hathcock, Daniel;Yu, Josephine
- 通讯作者:Yu, Josephine
Positively hyperbolic varieties, tropicalization, and positroids
正双曲线品种、热带化和正类
- DOI:10.1016/j.aim.2021.107677
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Rincón, Felipe;Vinzant, Cynthia;Yu, Josephine
- 通讯作者:Yu, Josephine
Higher connectivity of tropicalizations
热带化的更高连通性
- DOI:10.1007/s00208-021-02281-9
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Maclagan, Diane;Yu, Josephine
- 通讯作者:Yu, Josephine
Real Tropicalization and Analytification of Semialgebraic Sets
半代数集的实热带化与分析
- DOI:10.1093/imrn/rnaa112
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Jell, Philipp;Scheiderer, Claus;Yu, Josephine
- 通讯作者:Yu, Josephine
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Josephine Yu其他文献
Product-Mix Auctions and Tropical Geometry
产品组合拍卖和热带几何
- DOI:
10.1287/moor.2018.0975 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
N. Tran;Josephine Yu - 通讯作者:
Josephine Yu
Tropicalizing the positive semidefinite cone
正半定锥的热带化
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Josephine Yu - 通讯作者:
Josephine Yu
Concurrent betaine administration enhances exercise-induced improvements to glucose handling in obese mice
- DOI:
10.1016/j.numecd.2022.08.012 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
Josephine Yu;D. Ross Laybutt;Neil A. Youngson;Margaret J. Morris - 通讯作者:
Margaret J. Morris
Do most polynomials generate a prime ideal
大多数多项式都会生成素理想吗
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Josephine Yu - 通讯作者:
Josephine Yu
Linear systems on tropical curves
热带曲线上的线性系统
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0.8
- 作者:
Christian Haase;Gregg Musiker;Josephine Yu - 通讯作者:
Josephine Yu
Josephine Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Josephine Yu', 18)}}的其他基金
International Conference on Effective Methods in Algebraic Geometry
代数几何有效方法国际会议
- 批准号:
1903206 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Tropical Combinatorics and Applications
热带组合学及其应用
- 批准号:
1600569 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Tropical geometry: combinatorics, topology, and algorithms
热带几何:组合学、拓扑学和算法
- 批准号:
1101289 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 15万 - 项目类别:
Studentship
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
- 批准号:
10103131 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
EU-Funded
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
- 批准号:
AH/Z000041/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
- 批准号:
2338792 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
- 批准号:
24K20733 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




