New Developments at the Interface of Banach Algebras and Complex Analysis

Banach代数与复分析接口的新进展

基本信息

  • 批准号:
    1856010
  • 负责人:
  • 金额:
    $ 23.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

This project will advance research at the interface of complex analysis and functional analysis, areas of mathematics that provide the mathematical tools used in physics, engineering, and computational chemistry. Several longstanding problems will be studied using new concepts recently introduced by the principal investigator. The results of this research project will be disseminated via talks in seminars and conferences and via publications in widely available journals. The principal investigator will continue to mentor junior mathematicians in related areas by suggesting to them problems motivated by this research project that are well matched to their particular strengths. He will also continue to encourage students to pursue university degrees in STEM fields. The principal investigator will use methods from functional analysis and complex analysis in one and several variables to study problems in four distinct, related areas of mathematics: the corona problem in several complex variables, Arveson's conjecture in multivariable operator theory, problems concerning analytic structure in commutative Banach algebras, and problems concerning homeomorphism groups. A major focus of the research will be the close connection between commutative Banach algebras and analyticity which, despite over 60 years of investigation by many mathematicians, remains in many ways mysterious. The principal investigator recently discovered a new concept of analytic set: in addition to providing a new perspective on analytic structure in commutative Banach algebras, this concept also provides a new perspective on the corona problem and suggests the development of a field that could be described as "nonsmooth complex analysis". Another major focus of the research will be Banach algebras invariant under group actions and their connections to an important conjecture of Arveson concerning Hilbert modules with wide ranging ramifications in operator theory and C*-algebras.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将推进复杂分析和泛函分析的接口研究,这两个数学领域提供了在物理、工程和计算化学中使用的数学工具。将使用首席研究员最近提出的新概念来研究几个长期存在的问题。这一研究项目的成果将通过研讨会和会议上的演讲以及在广泛可获得的期刊上发表的出版物来传播。首席研究人员将继续指导相关领域的初级数学家,向他们建议这项研究项目所激发的问题,这些问题与他们的特殊优势很好地匹配。他还将继续鼓励学生攻读STEM领域的大学学位。主要研究人员将使用泛函分析和一元多元复分析的方法来研究四个不同的相关数学领域的问题:多复变量的日冕问题,多元算子理论中的Arveson猜想,关于交换Banach代数的解析结构的问题,以及关于同胚群的问题。研究的一个主要焦点将是交换Banach代数与解析性之间的密切联系,尽管许多数学家进行了60多年的研究,但在许多方面仍然是神秘的。这位首席研究者最近发现了一个新的解析集概念:除了为交换Banach代数的解析结构提供了一个新的视角外,这个概念还提供了一个关于冠冕问题的新视角,并提出了一个可以描述为“非光滑复分析”的领域的发展。研究的另一个主要焦点将是群作用下的Banach代数不变,以及它们与Arveson关于Hilbert模的一个重要猜想的联系,该猜想在算子理论和C*-代数中具有广泛的分支。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polynomially convex arcs in polynomially convex simple closed curves
多项式凸简单闭合曲线中的多项式凸弧
Topology of Gleason Parts in Maximal Ideal Spaces with no Analytic Discs
无解析盘的最大理想空间中格里森零件的拓扑
  • DOI:
    10.4153/s0008414x19000567
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Izzo, Alexander J.;Papathanasiou, Dimitris
  • 通讯作者:
    Papathanasiou, Dimitris
Polynomial hulls of arcs and curves
Polynomial hulls of arcs and curves II
圆弧和曲线的多项式包 II
The set of bounded continuous nowhere locally uniformly continuous functions is not Borel
有界连续无处局部一致连续函数的集合不是 Borel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Izzo其他文献

Alexander Izzo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Izzo', 18)}}的其他基金

Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9207975
  • 财政年份:
    1992
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Fellowship Award

相似海外基金

Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
  • 批准号:
    10064693
  • 财政年份:
    2024
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
  • 批准号:
    23H01264
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
  • 批准号:
    23H01944
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
  • 批准号:
    23K12950
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New developments in Javanese Homo erectus research using synchrotron, proteomics and high precision dating
利用同步加速器、蛋白质组学和高精度测年技术进行爪哇直立人研究的新进展
  • 批准号:
    23K17404
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
  • 批准号:
    23K01343
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了