Operator Theory and Stable Polynomials

算子理论和稳定多项式

基本信息

  • 批准号:
    1900816
  • 负责人:
  • 金额:
    $ 19.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Operator theory is a broad and mature area of pure mathematics with close ties to the mathematics of quantum mechanics and control systems engineering. Indeed, von Neumann is often credited with formulating the foundations of operator theory as a language for quantum mechanics, while Nobert Wiener initiated an approach to engineering prediction problems (such as jet tracking) based on ideas from operator theory and harmonic analysis. In more recent decades, operator theory has been used in H-infinity control theory which has applications in automatic pilot design. On the other hand, a stable polynomial is not a field per se but a basic concept in mathematics that has become profoundly useful in the study of a diverse range of problems in mathematics: combinatorics (enumeration problems), graph theory (the study of networks), and operator theory. The purpose of this project is to use operator theory to study stable polynomials and vice versa. This project focuses on three problems: (1) the generalized Lax conjecture, (2) a quantitative understanding of linear preservers of stability, and (3) extensions of the theory of stable polynomials to entire functions. Semi-definite programming is a powerful technique in optimization and the generalized Lax conjecture is a bold assertion about the sets on which this theory can successfully be implemented. The conjecture claims that these feasibility sets have a geometric description in terms of hyperbolic polynomials (a slight generalization of the concept of a stable polynomial). Although evidently important in optimization, this would further establish links between stable polynomials and operator theory as the question is closely related to the concept of representing stable polynomials via operator theoretic determinantal representations. Problem (2) is about taking the highly successful theorems of Borcea-Branden that characterized the linear maps on stable polynomials that preserve stability and making them quantitative. How exactly do stability preservers modify zero sets? One approach to this problem is through analyzing how stability preservers affect various sums-of-squares formulas for stable polynomials. Problem (3) is about a natural extension of stable polynomials to various classes of entire functions (the Polya class, Hermite-Biehler class) and would require developing multivariable theories of Hilbert spaces of entire functions. This latter endeavor is important in its own right as the successes in one variable Hilbert spaces of entire functions have been profound (i.e. the Poltoratski approach to problems of uncertainty type).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
算符理论是一个广泛而成熟的纯数学领域,与量子力学和控制系统工程的数学有着密切的联系。事实上,冯·诺伊曼经常被认为是将算子理论作为量子力学语言的基础,而诺伯特·维纳则基于算子理论和谐波分析的思想,提出了一种解决工程预测问题(如射流跟踪)的方法。近几十年来,算子理论在h -∞控制理论中得到了应用,在自动驾驶仪的设计中得到了应用。另一方面,稳定多项式本身不是一个领域,而是数学中的一个基本概念,它在数学中各种各样的问题的研究中变得非常有用:组合学(枚举问题)、图论(网络的研究)和算子理论。本课题的目的是利用算子理论来研究稳定多项式,反之亦然。本课题主要研究三个问题:(1)广义Lax猜想;(2)稳定性线性保持器的定量认识;(3)稳定多项式理论在整个函数中的推广。半定规划是一种强大的优化技术,广义Lax猜想是关于该理论可以成功实现的集合的大胆断言。该猜想声称这些可行性集具有双曲多项式(稳定多项式概念的稍微推广)的几何描述。虽然在优化中很重要,但这将进一步建立稳定多项式和算子理论之间的联系,因为这个问题与通过算子理论行列式表示稳定多项式的概念密切相关。问题(2)是关于采用Borcea-Branden非常成功的定理,该定理描述了稳定多项式上保持稳定性的线性映射,并使其量化。稳定保持器究竟是如何修改零集的?解决这个问题的一种方法是分析稳定性保持器如何影响稳定多项式的各种平方和公式。问题(3)是关于稳定多项式的自然扩展到整个函数的各种类(Polya类,Hermite-Biehler类),并且需要发展整个函数的希尔伯特空间的多变量理论。后一种努力就其本身而言是重要的,因为在整个函数的单变量希尔伯特空间中的成功是深刻的(即Poltoratski解决不确定性类型问题的方法)。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An [O iii] search for extended emission around AGN with H i mapping: a distant cloud ionized by Mkn 1
[O-iii] 使用 H-i 映射搜索 AGN 周围的扩展发射:由 Mkn 1 电离的遥远云
  • DOI:
    10.1093/mnras/staa1510
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Knese, Erin Darnell;Keel, William C;Knese, Greg;Bennert, Vardha N;Moiseev, Alexei;Grokhovskaya, Aleksandra;Dodonov, Sergei N
  • 通讯作者:
    Dodonov, Sergei N
Cyclicity Preserving Operators on Spaces of Analytic Functions in $${\mathbb {C}}^n$$
$${mathbb {C}}^n$$ 解析函数空间上的循环保留算子
Kummert's approach to realization on the bidisk
Kummert在bidisk上的实现方法
A simple proof of necessity in the McCullough-Quiggin theorem
麦卡洛-奎金定理必要性的简单证明
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Greg Knese其他文献

Local theory of stable polynomials and bounded rational functions of several variables
稳定多项式和多变量有界有理函数的局部理论
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Bickel;Greg Knese;J. Pascoe;A. Sola
  • 通讯作者:
    A. Sola
Polynomials with no zeros on the bidisk
bidisk 上没有零点的多项式
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Greg Knese
  • 通讯作者:
    Greg Knese
Extreme points and saturated polynomials
极值点和饱和多项式
Hadamard Multipliers of the Agler Class
Schur-Agler class rational inner functions on the tridisk
三盘上的 Schur-Agler 类有理内函数
  • DOI:
    10.1090/s0002-9939-2011-10975-4
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Greg Knese
  • 通讯作者:
    Greg Knese

Greg Knese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Greg Knese', 18)}}的其他基金

Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
  • 批准号:
    2247702
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
International Workshop on Operator Theory and Applications 2016
2016年算子理论与应用国际研讨会
  • 批准号:
    1600703
  • 财政年份:
    2016
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Harmonic analysis and spaces of analytic functions in several variables
调和分析和多变量解析函数空间
  • 批准号:
    1363239
  • 财政年份:
    2014
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Operator related function theory and algebraic varieties
算子相关函数论和代数簇
  • 批准号:
    1419034
  • 财政年份:
    2013
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Continuing Grant
Operator related function theory and algebraic varieties
算子相关函数论和代数簇
  • 批准号:
    1001791
  • 财政年份:
    2010
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Continuing Grant
Operator related function theory and algebraic varieties
算子相关函数论和代数簇
  • 批准号:
    1048775
  • 财政年份:
    2010
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2427220
  • 财政年份:
    2024
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
  • 批准号:
    2247702
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
  • 批准号:
    2305392
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2314082
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Classifying spaces, proper actions and stable homotopy theory
空间分类、适当作用和稳定同伦理论
  • 批准号:
    EP/X038424/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Research Grant
Applications of equivariant stable homotopy theory
等变稳定同伦理论的应用
  • 批准号:
    2301520
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2203785
  • 财政年份:
    2022
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2204357
  • 财政年份:
    2022
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Stable Homotopy Groups: Theory and Computation
稳定同伦群:理论与计算
  • 批准号:
    2202267
  • 财政年份:
    2022
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了